Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium...Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium oxalate monohydrate stone group(group A,n=373),anhydrous uric acid stone group(group B,n=86),carbonate apatite group(group C,n=30),ammonium urate stone group(group D,n=28)and ammonium magnesium phosphate hexahydrate stone group(group E,n=26)according to the composition of calculi,also divided into training set and test set at the ratio of 7∶3.Radiomics features were extracted and screened based on plain CT images of urinary system.Five binary task models(model A—E corresponding to group A—E)and a quinary task model were constructed using least absolute shrinkage and selection operator algorithm for predicting the composition of calculi in vivo.Then receiver operating characteristic curves were drawn,and the area under the curves(AUC)were calculated to evaluate the predictive efficacy of binary task models,while the accuracy,precision,recall and F1 score were used to evaluate the predictive efficacy of the quinary task model.Results All binary task models had good efficacy for predicting the composition of urinary calculi in vivo,with AUC of 0.860—0.948 in training set and of 0.856—0.933 in test set.The accuracy,precision,recall and F1 score of the quinary task model for predicting the composition of in vivo urinary calculi was 82.25%,83.79%,46.23%and 0.596 in training set,respectively,while was 80.63%,75.26%,43.48%and 0.551 in test set,respectively.Conclusion Binary task radiomics models based on preoperative plain CT had good efficacy for predicting the composition of in vivo urinary calculi,while the quinary task radiomics model had high accuracy but relatively poor stability.展开更多
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho...Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.展开更多
QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based ...QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.展开更多
The condition and physical sense of actual dynamic user optimum are explained by analyzing a simple road network route choice. To match the practical application requirements, assignment network and simulation network...The condition and physical sense of actual dynamic user optimum are explained by analyzing a simple road network route choice. To match the practical application requirements, assignment network and simulation network are classified account for varying flowing loading. Instantaneous dynamic user optimum model should be applied to the former and actual dynamic user optimum model the latter respectively. The two model’s feasibility is studied as well. Considering the application in ATMS, the model is mainly used to analyze the altering OD problem. Moreover, it adds the method of route adapting into the object function selection to appraise elastic trip strategy and set up real means of route inducement.展开更多
文摘Objective To observe the value of preoperative CT radiomics models for predicting composition of in vivo urinary calculi.Methods Totally 543 urolithiasis patients were retrospectively enrolled and divided into calcium oxalate monohydrate stone group(group A,n=373),anhydrous uric acid stone group(group B,n=86),carbonate apatite group(group C,n=30),ammonium urate stone group(group D,n=28)and ammonium magnesium phosphate hexahydrate stone group(group E,n=26)according to the composition of calculi,also divided into training set and test set at the ratio of 7∶3.Radiomics features were extracted and screened based on plain CT images of urinary system.Five binary task models(model A—E corresponding to group A—E)and a quinary task model were constructed using least absolute shrinkage and selection operator algorithm for predicting the composition of calculi in vivo.Then receiver operating characteristic curves were drawn,and the area under the curves(AUC)were calculated to evaluate the predictive efficacy of binary task models,while the accuracy,precision,recall and F1 score were used to evaluate the predictive efficacy of the quinary task model.Results All binary task models had good efficacy for predicting the composition of urinary calculi in vivo,with AUC of 0.860—0.948 in training set and of 0.856—0.933 in test set.The accuracy,precision,recall and F1 score of the quinary task model for predicting the composition of in vivo urinary calculi was 82.25%,83.79%,46.23%and 0.596 in training set,respectively,while was 80.63%,75.26%,43.48%and 0.551 in test set,respectively.Conclusion Binary task radiomics models based on preoperative plain CT had good efficacy for predicting the composition of in vivo urinary calculi,while the quinary task radiomics model had high accuracy but relatively poor stability.
文摘Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.
文摘QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.
文摘The condition and physical sense of actual dynamic user optimum are explained by analyzing a simple road network route choice. To match the practical application requirements, assignment network and simulation network are classified account for varying flowing loading. Instantaneous dynamic user optimum model should be applied to the former and actual dynamic user optimum model the latter respectively. The two model’s feasibility is studied as well. Considering the application in ATMS, the model is mainly used to analyze the altering OD problem. Moreover, it adds the method of route adapting into the object function selection to appraise elastic trip strategy and set up real means of route inducement.