期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于轻量时空图卷积模型的路网交通流预测 被引量:5
1
作者 贺文武 裴博彧 +1 位作者 毛国君 陈维亚 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2022年第9期2552-2562,共11页
交通流预测是智能交通系统的重要组成部分。针对路网交通流天然具有的时空依赖性,结合交通流时序因果卷积与路网空间拓扑结构图卷积,提出一种基于递增式丢边的轻量时空图卷积神经网络模型,实现时空特征的有效融合,建立路网交通流高精度... 交通流预测是智能交通系统的重要组成部分。针对路网交通流天然具有的时空依赖性,结合交通流时序因果卷积与路网空间拓扑结构图卷积,提出一种基于递增式丢边的轻量时空图卷积神经网络模型,实现时空特征的有效融合,建立路网交通流高精度预测模型,提高交通流预测精度的同时降低其计算资源消耗、缩短预测响应时间。模型以单“三明治”式时空卷积模块为核心组件,减少时间卷积与空间卷积间的高计算消耗交互,有效提取交通流时空特征的同时保持整体结构轻量,其中的“厚夹心”空间图卷积采用多层图卷积网络以捕获远程高阶邻居节点信息、扩大空间感受野,并引入递增式丢边策略分阶处理邻居节点边,消解其潜在的过平滑。在模型训练中引入动态初始学习率,随模型训练进程演进动态调适学习率,进一步提升优化器性能,保证模型整体上的优越性。以真实基准交通流数据开展实验,对比分析本文所构建模型与多种相关基线模型的训练时间、预测精度等指标,并分析讨论所建模型在路网各节点上预测结果的离散性及其精度,解析多层图卷积可能具有的过平滑现象以及递增式丢边策略的消解能力。研究结果表明,本文所构建模型能有效捕获路网交通流的时空特性,以更少的训练时间获得更高的预测精度。 展开更多
关键词 智慧交通 路网交通流预测 轻量时空图卷积 递增式丢边 动态初始学习率
下载PDF
融合路段传输模型和深度学习的城市路网短时交通流状态预测 被引量:10
2
作者 陈喜群 曹震 +1 位作者 沈楼涛 李俊懿 《中国公路学报》 EI CAS CSCD 北大核心 2021年第12期203-216,共14页
城市路网短时交通流预测是实现智慧城市的关键技术,随着人工智能的发展,越来越多的深度学习算法被应用于城市道路交通状态估计和预测研究。但是深度学习因缺少对交通流演化机理的刻画导致其可解释性不强,而交通流解析模型常因预测精度... 城市路网短时交通流预测是实现智慧城市的关键技术,随着人工智能的发展,越来越多的深度学习算法被应用于城市道路交通状态估计和预测研究。但是深度学习因缺少对交通流演化机理的刻画导致其可解释性不强,而交通流解析模型常因预测精度问题导致其应用效果受到限制。为了取长补短,首先对路段传输模型(Link Transmission Model, LTM)进行改进,提出了可以利用真实数据实时校准仿真网络从而提高预测精度的数据驱动型路段传输模型(Data-driven Link Transmission Model, D;LTM),并在此基础上引入时空深度张量神经网络模型(Spatial-temporal Deep Tensor Neural Networks, ST-DTNN)来捕获网络交通流数据中的时间维、空间维和深度维特征信息,形成融合路段传输模型和深度学习的城市路网短时交通流预测模型D;LTM-STDTNN。该混合模型一方面通过D;LTM机理模型来揭示交通流演化的基本规律,发挥其对城市路网交通流状态时空演化过程的精细刻画能力,增强混合模型机理的可解释性;另一方面利用ST-DTNN模型强大的高维数据挖掘能力和动态特征学习能力,提高城市级路网交通流的短时预测精度。该模型还考虑了交叉口不同转向的短时预测问题,具有更细的空间粒度和时间粒度,因此也具有更大的预测难度。实测结果表明:D;LTM-STDTNN混合模型相对于基准模型预测精度更高,且具备模拟演化机理方面的优势,提升了城市路网短时交通流状态预测能力,揭示了路段间的交通流动态演化规律,可为网络交通流模拟推演和主动管控提供了技术支撑。 展开更多
关键词 交通工程 交通大数据 混合模型 路网短时交通预测 路段传输模型 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部