期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于路网压缩的城市路网脆弱路段识别 被引量:5
1
作者 李彦瑾 罗霞 《公路交通科技》 CAS CSCD 北大核心 2019年第5期104-112,共9页
为了更高效地识别出突发环境下城市道路网络中的脆弱路段,首先通过网络特性分析,运用网络效率变化量与最大连通子图变化量这两类鲁棒性指标筛选出道路网络的潜在脆弱路段集合,并在此路段集合的基础上设计出一种基于可达性原理的路网矩... 为了更高效地识别出突发环境下城市道路网络中的脆弱路段,首先通过网络特性分析,运用网络效率变化量与最大连通子图变化量这两类鲁棒性指标筛选出道路网络的潜在脆弱路段集合,并在此路段集合的基础上设计出一种基于可达性原理的路网矩阵压缩算法,该算法可将原始路网压缩成若干个彼此连通且相互独立的子路网。然后在压缩后的各个子路网上,考虑不同类型出行者对路段阻抗的随机估计偏差以及对应的路径选择行为,推导出一个多用户随机均衡配流模型并用MSA算法进行求解。最后通过改进原有的网络效率指标,构建出一个新的融合交通流随机分布特性的路网脆弱性指标,用来识别各子路网中的脆弱路段,再结合实测数据进行了模型验证。结果表明:相较于传统的遍历法,基于路网压缩的脆弱路段识别模型能够真实地刻画出突发环境下城市路网交通流分布的随机特性,而且求解模型所耗时间明显缩短(计算过程仅约2~3 min);该模型的求解结果对各个子路网中的脆弱路段有着更好的区分(区分度比传统的遍历法高出24.46%),这能够有效地降低传统识别方法对城市网络脆弱路段误判的可能性,并能够及时地为突发环境下的城市交通管理部门提供关于应急救援与人员疏散的决策支持。 展开更多
关键词 城市交通 路网 脆弱性 路网压缩 算法复杂度
下载PDF
基于路网压缩策略的改进Highway Hierarchical算法 被引量:1
2
作者 蔡文学 周兴 +1 位作者 许靖 钟慧玲 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期1654-1659,共6页
针对Highway Hierarchical算法中存在的路网压缩成环问题、预处理数据存储问题和完整最短路计算问题,采用无环压缩策略、分层存储策略和局部最短路存储策略,对算法进行了改进.广东省路网测试结果表明,改进后的算法在时间效率上约是原算... 针对Highway Hierarchical算法中存在的路网压缩成环问题、预处理数据存储问题和完整最短路计算问题,采用无环压缩策略、分层存储策略和局部最短路存储策略,对算法进行了改进.广东省路网测试结果表明,改进后的算法在时间效率上约是原算法的5倍,在空间效率上约是原算法的4倍. 展开更多
关键词 压缩路网 HIGHWAY Hierarchical算法 路径规划
下载PDF
Short-time prediction for traffic flow based on wavelet de-noising and LSTM model 被引量:3
3
作者 WANG Qingrong LI Tongwei ZHU Changfeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期195-207,共13页
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina... Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient. 展开更多
关键词 short-term traffic flow prediction deep learning wavelet denoising network matrix compression long short term memory(LSTM)network
下载PDF
Improving Centralized Path Calculation Based on Graph Compression 被引量:1
4
作者 Zhenglian Li Lixin Ji +1 位作者 Ruiyang Huang Shuxin Liu 《China Communications》 SCIE CSCD 2018年第6期120-124,共5页
Shortest-path calculation on weighted graphs are an essential operation in computer networks. The performance of such algorithms has become a critical challenge in emerging software-defined networks(SDN),since SDN con... Shortest-path calculation on weighted graphs are an essential operation in computer networks. The performance of such algorithms has become a critical challenge in emerging software-defined networks(SDN),since SDN controllers need to centralizedly perform a shortest-path query for every flow,usually on large-scale network. Unfortunately,one of the challenges is that current algorithms will become incalculable as the network size increases. Therefore, inspired by the compression graph in the field of compute visualization,we propose an efficient shortest path algorithm by compressing the original big network graph into a small one, but the important graph properties used to calculate path is reserved. We implement a centralized version of our approach in SDN-enabled network,and the evaluations validate the improvement compared with the well-known algorithms. 展开更多
关键词 graph representation path compression shortest path
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部