In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulatio...In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.展开更多
Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positi...Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.展开更多
Due to high node mobility, stability has been always one of the major concerns of vehicle clustering algorithms in vehicular ad hoc networks. In this paper, we propose a novel clustering algorithm based on the informa...Due to high node mobility, stability has been always one of the major concerns of vehicle clustering algorithms in vehicular ad hoc networks. In this paper, we propose a novel clustering algorithm based on the information of routes planned by vehicular navigation systems. In the clustering algorithm, we design a residual route time function to quantitatively calculate the overlapping time among vehicles based on route information, with which a novel clusterhead selection metric is presented. We further design a mechanism of future-clusterhead, which can help avoid message exchanges at intersections and reduce the overhead of cluster maintenance. The simulation results show that, compared with previous works, our clustering algorithm can achieve higher stability and at the same time lower communication cost.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60634010 and 60776829New Century Excellent Talents in University under Grant No. NCET-06-0074
文摘In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.
基金supported by the National Key Technology R&D Program of China (No. 2008BAH37B05095)
文摘Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.
基金partially supported by The National Key Research and Development Program of China(No.2016YFB0200404)National Natural Science Foundation of China(No.61501527,61379157,U1711263)+6 种基金MOE-CMCC Joint Research Fund of China(No.MCM20160104)State’s Key Project of Research and Development Plan(No.2016YFE01229003)the Fundamental Research Funds for the Central Universitiesthe Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20160429170032960)Guangdong Science and Technology Project(No.2016B010126003)2016 Major Project of Collaborative Innovation in Guangzhou(No.201604046008)Program of Science and Technology of Guangdong(No.2015B010111001)
文摘Due to high node mobility, stability has been always one of the major concerns of vehicle clustering algorithms in vehicular ad hoc networks. In this paper, we propose a novel clustering algorithm based on the information of routes planned by vehicular navigation systems. In the clustering algorithm, we design a residual route time function to quantitatively calculate the overlapping time among vehicles based on route information, with which a novel clusterhead selection metric is presented. We further design a mechanism of future-clusterhead, which can help avoid message exchanges at intersections and reduce the overhead of cluster maintenance. The simulation results show that, compared with previous works, our clustering algorithm can achieve higher stability and at the same time lower communication cost.