期刊文献+
共找到1,304篇文章
< 1 2 66 >
每页显示 20 50 100
自适应双层无迹卡尔曼滤波的车辆状态估计
1
作者 徐劲力 张光俊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期29-36,共8页
针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽... 针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽车模型对车辆行驶的横摆角速度和质心侧偏角进行估计。通过改进的Sage-Husa滤波器对系统过程噪声和测量噪声进行动态调整,进而减少车辆行驶状态估计的误差。应用Carsim与Matlab/Simulink进行联合仿真以及实车试验数据来验证该估计器的有效性,并与无迹卡尔曼滤波(UKF)算法进行对比。结果表明:与UKF算法相比,该算法有效提高了车辆行驶的横摆角速度和质心侧偏角的估计精度和稳定性。 展开更多
关键词 自适应双层无迹卡尔曼滤波 Sage-Husa 参数估计 横摆角速度 质心侧偏角
下载PDF
误差状态卡尔曼滤波的视觉惯性自适应融合定位方法研究
2
作者 王鹏 王大为 何晶晶 《航空科学技术》 2024年第4期104-111,共8页
头盔瞄准具(HMS)是近年来新一代战斗机飞行员的辅助瞄准设备,能够帮助飞行员增强战场态势感知能力,对敌方目标进行快速、精准打击。其能正常工作的关键是获取飞行员头部相对于运动飞机的姿态参数。本文结合头盔瞄准具这一应用场景研究... 头盔瞄准具(HMS)是近年来新一代战斗机飞行员的辅助瞄准设备,能够帮助飞行员增强战场态势感知能力,对敌方目标进行快速、精准打击。其能正常工作的关键是获取飞行员头部相对于运动飞机的姿态参数。本文结合头盔瞄准具这一应用场景研究了视觉组合姿态测量关键技术。视觉惯性组合定位能够实现目标位姿测量方法的优势互补,而由于标称噪声矩阵无法绝对准确预测,融合算法的鲁棒性、精度有待进一步提升。针对这一问题,本文提出一种误差状态卡尔曼滤波框架下基于变分贝叶斯推断的视觉惯性自适应融合方法。首先,对于过程噪声使用逆威沙特(Wishart)分布进行建模,之后通过引入隐变量分解一步预测协方差,并结合变分贝叶斯推断实现了对过程噪声协方差矩阵的在线估计。试验证明,在复杂运动及标称噪声协方差矩阵偏移较大的测量条件下,所提位姿测量算法具有较高的精度与鲁棒性,能够完成对靶标的快速、高精度跟踪。 展开更多
关键词 自适应 误差状态卡尔曼滤波 变分贝叶斯 视觉惯性融合 姿态测量
下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计
3
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 自适应无迹卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波算法的锂电池荷电状态预测
4
作者 蒙永龙 艾学忠 +2 位作者 郑巍 王明达 汪冬冬 《化工自动化及仪表》 CAS 2024年第2期294-300,共7页
针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后... 针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后在DST数据工况下,验证预测模型的准确性。对无迹卡尔曼滤波(UKF)算法和提出的AUKF算法进行仿真对比,结果表明:所提算法的最大误差在±0.02之内,预测精度更高、适用性更强。 展开更多
关键词 锂电池 荷电状态 自适应无迹卡尔曼滤波 遗忘因子递推最小二乘
下载PDF
小波分析的自适应卡尔曼滤波模型在地铁隧道变形监测中的应用
5
作者 孙常康 邓文彬 +1 位作者 秦德胜 宋乐乐 《北京测绘》 2024年第1期113-118,共6页
为了加强地铁安全保护机制,基于测量机器人智能化、自动化的特点,对某试验区的地铁隧道进行变形监测,选择Trimble S9 HP测量机器人进行数据采集,通过云平台进行数据处理及变形分析,最后利用小波分析的自适应卡尔曼滤波模型对后期形变量... 为了加强地铁安全保护机制,基于测量机器人智能化、自动化的特点,对某试验区的地铁隧道进行变形监测,选择Trimble S9 HP测量机器人进行数据采集,通过云平台进行数据处理及变形分析,最后利用小波分析的自适应卡尔曼滤波模型对后期形变量进行预测。结果表明,自动测量机器人的测量精度满足隧道监测要求,完成了地铁隧道变形监测的预设目标,分析隧道结构的变形特征并通过小波分析的自适应卡尔曼滤波模型进行变形预测,所得预测数据精度较高,可以为今后工程建设和地铁维护提供参考。 展开更多
关键词 地铁隧道 自动测量机器人 变形监测 小波分析 自适应卡尔曼滤波模型
下载PDF
自适应渐消无迹卡尔曼滤波锂电池SoC估计
6
作者 郭向伟 李璐颖 +2 位作者 王晨 王亚丰 李万 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期167-175,共9页
精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子... 精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子对UKF误差协方差矩阵进行加权,并基于新型衰减因子完成AFUKF的设计,减小陈旧量测值对估计结果的影响,提高传统UKF的估计精度和跟踪能力。其次,基于自主实验平台测试数据,验证了本文所提AFUKF算法存在初始误差时,相较于传统UKF算法,ECE工况下平均绝对误差和均方根误差分别下降了47.95%和33.92%,DST工况下分别下降了36.40%和27.73%;相较于同类改进的AUKF算法,ECE工况下平均绝对误差和均方根误差分别下降了43.36%和33.51%,DST工况下分别下降了39.01%和25.63%。模型结果表明,相比于传统UKF算法以及同类型改进的AUKF算法,AFUKF具有更高的估计精度,且在相同初始SoC误差条件下具有更好的鲁棒性。 展开更多
关键词 荷电状态 衰减因子 无迹卡尔曼滤波 自适应渐消无迹卡尔曼滤波
下载PDF
基于自适应优化选择-抗差自适应卡尔曼滤波混合模型的GNSS+5G组合定位
7
作者 胡祥祥 宋宝 +4 位作者 石亚亚 庞栋栋 吴成永 张利利 李一蜚 《测绘通报》 CSCD 北大核心 2024年第7期24-29,共6页
PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据... PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据此,本文提出了一种基于GNSS+5G组合数据的自适应优化选择-抗差自适应卡尔曼滤波(AOS-RAKF)算法,以实现城市复杂环境中的高精度定位估计。该算法主要由两个模块组成,即基于AOS的5G基站测量数据优化和基于AOS-RAKF算法的GNSS+5G组合定位。其中,基于AOS的5G基站测量数据优化模块通过自适应优化选择因子实现更好的观测数据重选。GNSS+5G组合定位模块利用优化后的5G数据和GNSS建立耦合结构模型,再利用RAKF方法实现移动车辆的高精度定位。半实物仿真测试结果表明,复杂城市环境下与使用原始测量数据的GNSS、单5G、传统的GNSS+5G组合定位相比,本文AOS-RAKF方法显著提高了定位精度。 展开更多
关键词 5G定位 GNSS GNSS+5G组合定位 自适应优化选择算法 抗差自适应卡尔曼滤波算法
下载PDF
自适应无迹卡尔曼滤波算法在水下组合导航系统中的应用
8
作者 肖鹏飞 许至尊 +1 位作者 白虎林 刘洺辛 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第4期121-128,共8页
【目的】解决水下组合导航系统中先验噪声与实际噪声分布不匹配时,融合滤波性能下降问题,提高自主式水下航行器导航精度。【方法】提出一种自适应无迹卡尔曼滤波算法(AUKF),在融合算法中引入自适应因子;重构系统状态方程中速度项与状态... 【目的】解决水下组合导航系统中先验噪声与实际噪声分布不匹配时,融合滤波性能下降问题,提高自主式水下航行器导航精度。【方法】提出一种自适应无迹卡尔曼滤波算法(AUKF),在融合算法中引入自适应因子;重构系统状态方程中速度项与状态变量的结合方式,解决系统方差不一致问题。通过仿真实验和半物理实验验证该算法的有效性。【结果与结论】与无迹卡尔曼滤波算法相比,在平均位置估计偏差上,AUKF算法的纬度均方根误差(RMSE)降低27%,经度RMSE降低27%,高度RMSE降低25%。AUKF在面对偏差对系统状态的扰动时能够有效抑制滤波发散,从而有效地提高自主式水下航行器的导航精度。 展开更多
关键词 组合导航 无迹卡尔曼滤波 自适应因子 捷联惯性导航 多普勒测速仪
下载PDF
基于参数解耦的变分贝叶斯自适应卡尔曼滤波
9
作者 许红 刘欣蕊 +1 位作者 邢逸舟 全英汇 《雷达科学与技术》 北大核心 2024年第3期291-299,共9页
针对噪声协方差矩阵失配情况下的状态估计问题,本文基于变分贝叶斯框架,提出了一种适用于过程噪声协方差矩阵和测量噪声协方差矩阵均未知条件下的参数解耦的变分贝叶斯自适应卡尔曼滤波算法。所提算法选取预测误差协方差矩阵作为变分优... 针对噪声协方差矩阵失配情况下的状态估计问题,本文基于变分贝叶斯框架,提出了一种适用于过程噪声协方差矩阵和测量噪声协方差矩阵均未知条件下的参数解耦的变分贝叶斯自适应卡尔曼滤波算法。所提算法选取预测误差协方差矩阵作为变分优化变量,并引入了其马尔可夫演化模型,构造了参数解耦的变分推断模型。同时,采用固定点迭代优化实现状态、预测误差协方差矩阵和测量噪声协方差矩阵的联合后验概率分布求解,并设计了算法的收敛性判断准则。仿真结果验证了算法的有效性。 展开更多
关键词 自适应状态估计 卡尔曼滤波 变分贝叶斯 噪声协方差矩阵 参数解耦
下载PDF
基于集中式卡尔曼滤波干扰观测器的无模型自适应控制
10
作者 徐通福 李秀英 《机床与液压》 北大核心 2024年第1期36-41,共6页
针对一类具有测量扰动的离散时间非线性系统,提出一种基于集中式卡尔曼滤波干扰观测器的无模型自适应控制方法。利用动态线性化方法构造被控系统的线性化数据模型;根据线性化数据模型和传感器的测量数据,设计最优集中式卡尔曼滤波干扰... 针对一类具有测量扰动的离散时间非线性系统,提出一种基于集中式卡尔曼滤波干扰观测器的无模型自适应控制方法。利用动态线性化方法构造被控系统的线性化数据模型;根据线性化数据模型和传感器的测量数据,设计最优集中式卡尔曼滤波干扰观测器;并利用观测器的输出在线调整伪偏导数,提出系统的控制更新方案。该方案的设计和分析不依赖于除输入输出数据的任何模型信息,可避免常规无模型自适应控制方法容易受测量扰动的影响。仿真结果表明:与基于单个传感器卡尔曼滤波干扰观测器的无模型自适应控制方法相比,提出的基于多传感器最优集中式卡尔曼滤波干扰观测器的无模型自适应控制方法具有更好的跟踪性能和更大的数据信噪比。 展开更多
关键词 集中式卡尔曼滤波 干扰观测器 无模型自适应控制 动态线性化
下载PDF
基于自适应卡尔曼滤波的RFID/SINS组合导航研究
11
作者 张一康 陈燚涛 刘芳 《无线电工程》 2024年第1期98-104,共7页
在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(A... 在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(Adaptive Kalman Filtering,AKF)的RFID/SINS组合导航系统,通过RFID定位系统抑制惯性导航误差发散,并应用AKF将噪声参数与量测输出参数关联实现实时更新。对AKF和标准卡尔曼滤波(Kalman Filtering,KF)下的RFID/SINS组合导航系统进行了仿真和实验。结果表明,在AKF下组合导航系统平均定位误差降低了10%,位置稳定性提升了7.4%,定位误差保持在0.07 m左右。基于AKF的RFID/SINS组合导航系统能够满足室内高精度定位导航的需求。 展开更多
关键词 射频识别 捷联惯导系统 组合导航 自适应卡尔曼滤波 仿真与实验分析
下载PDF
基于核相关滤波和卡尔曼滤波预测的混合跟踪方法
12
作者 范文兵 张璐璐 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期20-26,共7页
针对核相关滤波(KCF)跟踪算法在遮挡场景中出现跟踪性能降低甚至跟踪失败的问题,提出了一种核相关滤波和卡尔曼滤波(KF)预测相结合的模型自适应抗遮挡图像目标跟踪算法KCF-KF。首先,考虑到传统KCF目标跟踪算法中缺少遮挡评估的问题,通... 针对核相关滤波(KCF)跟踪算法在遮挡场景中出现跟踪性能降低甚至跟踪失败的问题,提出了一种核相关滤波和卡尔曼滤波(KF)预测相结合的模型自适应抗遮挡图像目标跟踪算法KCF-KF。首先,考虑到传统KCF目标跟踪算法中缺少遮挡评估的问题,通过引入响应图的峰值旁瓣比来对图像目标的遮挡情况进行判断,并将遮挡类型划分为部分遮挡和严重遮挡。其次,根据遮挡程度采取不同的模型更新策略,当目标无遮挡或者部分遮挡时,替代传统KCF跟踪算法中采用固定学习率更新模型的方法,通过自适应地调整模型学习率来更新目标外观模型,避免跟踪漂移;当目标被严重遮挡时,停止KCF模型更新。最后,应用严重遮挡之前的运动信息构建卡尔曼滤波器状态空间和位置输出模型,设计卡尔曼滤波算法预测运动目标轨迹来估计遮挡情景下的目标位置,从而解决在遮挡场景中目标跟踪失败的问题。采用OTB-2013标准数据集进行大量实验,结果表明:所提的混合跟踪算法KCF-KF的距离精度为0.796,重叠成功率为0.692。与其他传统跟踪算法相比,该混合算法的跟踪精度和跟踪成功率均优于其他算法,并且在遇到目标遮挡挑战时具有更好的跟踪性能,有效地解决了跟踪过程中的遮挡干扰问题。 展开更多
关键词 核相关滤波 遮挡 峰值旁瓣比 自适应模型更新 卡尔曼滤波
下载PDF
基于改进的无迹卡尔曼滤波长基线定位算法研究
13
作者 侯华 王曹 +1 位作者 杨沛钊 曹俊俊 《计算机应用与软件》 北大核心 2024年第9期314-318,376,共6页
在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filte... 在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filter, AUKF)长基线定位算法。该算法在无迹卡尔曼算法(UKF)的基础上引入遗忘因子,充分利用新的测量数据动态调整测量协方差矩阵和过程协方差矩阵,有效避免因长期运行带来的累计误差。实验结果显示,当AUV沿两种不同轨迹运行时,AUKF算法的均方根误差最低,分别为2.901 1、19.221 5。该算法定位精度高,适用于长时间工作的高精度水下定位。 展开更多
关键词 AUV 长基线定位 自适应无迹卡尔曼滤波
下载PDF
融合神经网络的卡尔曼滤波啸叫抑制路径突变检测算法
14
作者 郭昊诚 陈锴 卢晶 《数据采集与处理》 CSCD 北大核心 2024年第5期1126-1134,共9页
分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC)。然而,当声反馈路径发生突变时,卡尔曼滤波会... 分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC)。然而,当声反馈路径发生突变时,卡尔曼滤波会进入锁死状态,难以再次跟踪。本文提出一种融合神经网络的卡尔曼滤波啸叫抑制状态检测算法(Kalman⁃filter⁃based AFC with state detection model,KFSD)。该系统将卡尔曼滤波声反馈抑制系统的传声器采集信号、残差信号和滤波器更新量作为输入特征,通过神经网络对卡尔曼滤波的状态误差协方差矩阵进行修正,从而实现路径突变情况下的再次跟踪和收敛。仿真实验结果验证了所提算法具有较高的正判率、较低的虚警率和较短的延迟帧数,算法同时具备快速再跟踪性能,提高了声反馈抑制效果。 展开更多
关键词 声反馈抑制 自适应滤波 卡尔曼滤波 状态检测 深度神经网络
下载PDF
基于AAPC、CS与卡尔曼滤波的WiFi室内定位跟踪算法
15
作者 胡久松 孙英杰 +2 位作者 黄晓峰 谷志茹 李浩 《湖南工业大学学报》 2024年第6期71-78,共8页
针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在... 针对基于位置指纹的WiFi室内定位技术的定位精度尚未达到实际应用要求的问题,提出一种融合自适应仿射传播(AAPC)、压缩感知(CS)与卡尔曼滤波的WiFi室内定位跟踪算法。其中,离线阶段使用AAPC算法生成具有最优聚类效应性能的聚类指纹,在线阶段采用CS与最近邻算法进行位置估计。最后,通过将卡尔曼滤波与物理限制相集成来进行定位跟踪。通过采集大量真实实验数据,证明了所开发的算法具有更高的定位精度和更准确的轨迹跟踪效果。 展开更多
关键词 WiFi室内定位 自适应仿射传播 压缩感知 卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波算法的月壤参数估计
16
作者 王志福 王学晨 +2 位作者 王阳 梁常春 王瑞 《实验室研究与探索》 CAS 北大核心 2023年第10期106-110,248,共6页
在月球低重力环境下,载人月球车的行驶稳定性会受到月壤参数影响和发生参数无法直接获取的问题,对此提出一种月壤参数估计算法。建立月球车行驶过程中轮壤模型并进行简化,设计基于自适应无迹卡尔曼滤波的估计器,通过车轮力实现月壤参数... 在月球低重力环境下,载人月球车的行驶稳定性会受到月壤参数影响和发生参数无法直接获取的问题,对此提出一种月壤参数估计算法。建立月球车行驶过程中轮壤模型并进行简化,设计基于自适应无迹卡尔曼滤波的估计器,通过车轮力实现月壤参数在线估计。在Adams/Simulink中搭建月球车动力学模型及估计算法模型,并进行联合仿真。仿真结果表明,设计的估计器能够较为准确地估计月壤参数。 展开更多
关键词 载人月球车 自适应无迹卡尔曼滤波 月壤参数
下载PDF
基于改进自适应无迹卡尔曼滤波算法的锂电池荷电状态估计 被引量:1
17
作者 张海涛 刘新天 《汽车工程师》 2023年第11期12-18,共7页
针对变窗口自适应无迹卡尔曼滤波(AUKF)算法在窗口改变时窗口长度发生突变,窗口序列数据急剧减少,导致状态估计误差增大,稳定性和精确度下降的问题,基于二阶RC等效电路模型,并采用遗忘递推最小二乘(FFRLS)算法进行参数辨识,结合改进后... 针对变窗口自适应无迹卡尔曼滤波(AUKF)算法在窗口改变时窗口长度发生突变,窗口序列数据急剧减少,导致状态估计误差增大,稳定性和精确度下降的问题,基于二阶RC等效电路模型,并采用遗忘递推最小二乘(FFRLS)算法进行参数辨识,结合改进后的变窗口AUKF算法估计锂电池荷电状态(SOC)。在城市道路循环(UDDS)工况下进行试验验证,并与无迹卡尔曼滤波(UKF)、自适应无迹卡尔曼滤波(AUKF)及变窗口AUKF算法进行对比,结果表明,改进后的变窗口AUKF算法将平均误差控制在0.38%以内,具有更高的精确性和收敛性。 展开更多
关键词 无迹卡尔曼滤波 荷电状态 变窗口噪声估计器 自适应滤波
下载PDF
卡尔曼滤波改进虚拟同步机控制研究
18
作者 艾鹏飞 吕志鹏 +1 位作者 周珊 陈企楚 《现代电子技术》 北大核心 2024年第14期89-93,共5页
虚拟同步发电机(VSG)通过模拟同步发电机的动态特性为电网提供惯性支持,但是VSG系统中通信传输过程的噪声会影响精度,从而造成频率抖动。针对上述问题,在传统的VSG控制系统上加入卡尔曼滤波环节,形成一种新型的抗扰控制方式。在控制中... 虚拟同步发电机(VSG)通过模拟同步发电机的动态特性为电网提供惯性支持,但是VSG系统中通信传输过程的噪声会影响精度,从而造成频率抖动。针对上述问题,在传统的VSG控制系统上加入卡尔曼滤波环节,形成一种新型的抗扰控制方式。在控制中利用遗传算法将卡尔曼滤波器的协方差矩阵Q和R作为遗传算法的个体编码,设计适应度函数来评估不同参数组合下的滤波效果,以提升VSG系统的性能。仿真结果表明,所提出的控制策略能够有效提高运行稳定性,消除机端频率抖动。 展开更多
关键词 卡尔曼滤波 虚拟同步发电机 噪声消除 遗传算法优化 适应度函数 并网运行
下载PDF
基于PNGV模型与自适应卡尔曼滤波的铅炭电池荷电状态评估 被引量:4
19
作者 陈正 王志得 +2 位作者 牟文彪 祝培旺 肖刚 《储能科学与技术》 CAS CSCD 北大核心 2023年第3期941-950,共10页
储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。... 储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。本工作首先通过静流间歇滴定技术探究铅炭电池的荷电状态与开路电压关系,后通过混合脉冲功率性能试验得到铅炭电池的伏安特征数据,建立一阶Thevenin和一阶PNGV等效电路模型,利用基于代理模型和灵敏度分析的随机算法(surrogate optimization algorithm,SOA)对两种等效电路模型进行参数辨识。在此基础上,利用扩展卡尔曼滤波算法(extended Kalman filter,EKF)估计铅炭电池SOC,估算过程考虑噪声干扰。另外,在铅炭电池SOC初值未知的情况下,EKF算法不能准确估计铅炭电池SOC。因此,本工作提出采用自适应扩展卡尔曼滤波算法(adaptive extended Kalman filter,AEKF)对铅炭电池进行状态估计,来弥补EKF的不足。结果表明,在存在噪声且SOC初值未知的情况下,AEKF算法较EKF算法和安时积分法更能准确估计铅炭电池SOC,在给定SOC初值为0.9时,误差最小,为3.91%,验证了算法的有效性与适用性,提高了铅炭电池荷电状态估计的准确性和可靠性。 展开更多
关键词 铅炭电池 荷电状态 PNGV模型 自适应卡尔曼滤波
下载PDF
自适应卡尔曼滤波与PSO-GA-BP算法的机器人误差补偿 被引量:4
20
作者 李光保 高栋 +2 位作者 路勇 平昊 周愿愿 《中国机械工程》 EI CAS CSCD 北大核心 2023年第20期2456-2465,共10页
采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想... 采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想模型进行验证,运用理想模型的理论位姿参数和激光跟踪仪的测量位姿参数基于Sage-Husa自适应卡尔曼滤波求解七轴机器人真实位姿坐标信息,得到理想位姿参数和真实位姿坐标信息的关节误差,然后结合粒子群优化-遗传算法-BP神经网络联合算法对七轴机器人建立误差预测模型,采用七轴机器人理论位姿参数作为输入样本,真实位姿与理论位姿的各关节角度差作为输出样本,通过库卡机器人Workvisual 5.0软件按照模型输出值对七轴机器人的各关节角度值进行补偿。经过仿真实验和加工,各关节误差补偿后的七轴机器人轨迹误差和绝对定位误差减小72%,满足工艺要求。 展开更多
关键词 激光切割 七轴机器人 误差补偿 粒子群优化-遗传算法-BP Sage-Husa自适应卡尔曼滤波
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部