1
|
非线性跳跃扩散型多证券价格过程欧式未定权益定价的Black-Scholes方程 |
林建忠
叶中行
|
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2001 |
0 |
|
2
|
非线性中立型时滞随机微分方程数值解的指数稳定性 |
宋美玲
胡良剑
|
《纺织高校基础科学学报》
CAS
|
2019 |
1
|
|
3
|
一类具有泊松跳的脉冲中立型随机泛函微分方程的存在性及稳定性研究 |
何旭阳
毛明志
张腾飞
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2023 |
0 |
|
4
|
带有非Lipschitz系数的跳扩散微分方程解的存在性 |
毛伟
|
《华中师范大学学报(自然科学版)》
CAS
北大核心
|
2016 |
2
|
|
5
|
一类跳跃扩散型股价过程组欧式未定权益定价 |
林建忠
叶中行
|
《应用概率统计》
CSCD
北大核心
|
2002 |
9
|
|
6
|
跳跃-扩散模型中期权定价的倒向随机微分方程方法及等价概率鞅测度 |
范玉莲
孙志宾
|
《应用数学学报》
CSCD
北大核心
|
2009 |
7
|
|
7
|
跳跃-扩散模型下的期权定价 |
张瑜
童艳春
|
《洛阳理工学院学报(社会科学版)》
|
2016 |
0 |
|
8
|
时滞带跳随机最优控制的充分型最大值原理 |
邢蕾
|
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
|
2012 |
0 |
|
9
|
跳跃扩散过程下欧式期权的模糊定价 |
余星
|
《湖南人文科技学院学报》
|
2009 |
0 |
|
10
|
一种特殊跳跃-扩散过程的欧式期权定价研究 |
余星
|
《邵阳学院学报(自然科学版)》
|
2009 |
0 |
|
11
|
基于跳跃-扩散过程的股票期权定价分析 |
杨德林
马梓钧
唐之祺
张余萍
|
《科技资讯》
|
2023 |
0 |
|
12
|
有多个跳跃源的信用风险欧式期权定价公式 |
魏正元
李时银
|
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2003 |
8
|
|
13
|
跳扩散环境下红利支付对不确定厌恶投资者最优投资组合选择的影响 |
梁勇
费为银
方和远
刘鹏
|
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2015 |
1
|
|
14
|
Black-Scholes期权定价模型的拓展 |
郭翱
徐丙振
于利伟
|
《宁波大学学报(理工版)》
CAS
|
2010 |
4
|
|
15
|
一类扩散过程的依分布稳定性 |
任继东
席福宝
|
《北京理工大学学报》
EI
CAS
CSCD
北大核心
|
2002 |
0 |
|
16
|
幂型支付欧式期权的套期方法定价 |
吴奕东
杨向群
|
《株洲师范高等专科学校学报》
|
2007 |
0 |
|
17
|
跳跃扩散型离散算术平均亚式期权的近似价格公式 |
刘智华
李时银
|
《数学的实践与认识》
CSCD
北大核心
|
2003 |
6
|
|
18
|
关于欧式交换期权定价的研究 |
陈珊
吴奕东
|
《怀化学院学报》
|
2007 |
0 |
|
19
|
一类杠杆公司的破产概率:回望期权定价方法 |
杨朝强
田有功
|
《应用概率统计》
CSCD
北大核心
|
2022 |
2
|
|
20
|
股价不连续时随机LQ控制在最优投资组合中的应用 |
黎金花
|
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
|
2010 |
0 |
|