The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and ...The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.展开更多
基金the support from the National Natural Science Foundation of China(Nos.11372188,and 51490674)the National Basic Research Program of China(973 Program)(No.2015CB251203)
文摘The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases.