期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
低资源条件下基于i-vector特征的LSTM递归神经网络语音识别系统 被引量:22
1
作者 黄光许 田垚 +2 位作者 康健 刘加 夏善红 《计算机应用研究》 CSCD 北大核心 2017年第2期392-396,共5页
在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究... 在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究了在特征空间中对说话人进行建模的技术,提取出能有效反映说话人和信道信息的身份认证矢量(i-vector);最后将上述研究结合构建了基于i-vector特征的LSTM递归神经网络系统。在Open KWS 2013标准数据集上进行实验,结果表明该技术相比于深度神经网络基线系统有相对10%的字节错误率降低。 展开更多
关键词 语音识别 长短时记忆神经网络 身份认证矢量
下载PDF
基于总体变化子空间自适应的i-vector说话人识别系统研究 被引量:17
2
作者 栗志意 张卫强 +1 位作者 何亮 刘加 《自动化学报》 EI CSCD 北大核心 2014年第8期1836-1840,共5页
在说话人识别研究中,基于身份认证矢量(identity vector,i-vector)的子空间建模被证明是目前最前沿最有效的说话人建模技术,其中如何有效准确地估计总体变化子空间矩阵T成为影响系统性能好坏的关键问题.本文针对i-vector技术如何在新的... 在说话人识别研究中,基于身份认证矢量(identity vector,i-vector)的子空间建模被证明是目前最前沿最有效的说话人建模技术,其中如何有效准确地估计总体变化子空间矩阵T成为影响系统性能好坏的关键问题.本文针对i-vector技术如何在新的应用环境下进行总体变化子空间矩阵T的自适应估计问题进行了研究,并提出了两种行之有效的自适应估计算法.在由美国国家标准技术局(American National Institute of Standard and Technology,NIST)组织的2008年说话人识别核心评测数据库以及自行采集的测试数据库上的实验结果显示,不论采用测试集数据本身还是与测试集较匹配的开发集数据,通过本文所提的自适应算法来更新总体变化子空间矩阵均可以使更新后的子空间更有利于新测试数据下的低维子空间描述,在新的测试环境下都更有利于说话人分类.此外实验结果还表明基于多子空间拼接的子空间自适应方法性能明显优于迭代自适应方法,而且两者的结合可达到最优的识别性能,且此时利用开发集数据进行自适应可以接近其利用测试集数据进行自适应得到的最优性能. 展开更多
关键词 身份认证矢量 总体变化子空间 自适应 说话人识别
下载PDF
一种基于受限玻尔兹曼机的说话人特征提取算法 被引量:19
3
作者 酆勇 熊庆宇 +1 位作者 石为人 曹俊华 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期256-262,共7页
基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后... 基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后利用隐层输出来表征输入语音超向量的说话人信息。文中比较了不同结构和模块(包括构建RBM的2种单元分布、线性判别分析等)对说话人确认性能的影响。所提方法作为一种新的i-vector特征表示方法,在NIST SRE 2008上取得了和ivector说话人基线系统相当的性能。通过与i-vector基线系统进行融合,系统性能进一步提升。在NIST SRE 2008女性电话语音测试集和男性电话语音测试集上的等错误率分别降至6.83%和4.73%。 展开更多
关键词 说话人确认 身份认证矢量 深度学习 受限玻尔兹曼机 线性判别分析
下载PDF
概率线性判别分析在语音命令词置信度判决中的应用 被引量:2
4
作者 闫宏宸 肖熙 《计算机系统应用》 2021年第1期54-62,共9页
置信度判决用于确定语音数据与模型之间的匹配程度,可以发现语音命令系统中的识别错误,提高其可靠性.近年来,基于身份矢量(identity vector,i-vector)以及概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)的方法在... 置信度判决用于确定语音数据与模型之间的匹配程度,可以发现语音命令系统中的识别错误,提高其可靠性.近年来,基于身份矢量(identity vector,i-vector)以及概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)的方法在说话人识别任务中取得了显著效果.本文尝试将i-vector以及PLDA模型作为一种命令词识别结果置信度分析方法,其无需声学模型、语言模型支撑,且实验表明性能良好.在此基础上,针对i-vector在刻画时序信息方面的不足,尝试将该系统与DTW融合,有效提升了系统对音频时序的鉴别能力. 展开更多
关键词 置信度 身份矢量 概率线性判别分析 时序信息 动态时间规整
下载PDF
基于贝叶斯主成分分析的i-vector说话人确认方法 被引量:2
5
作者 肜娅峰 陈晨 +1 位作者 陈德运 何勇军 《电子学报》 EI CAS CSCD 北大核心 2021年第11期2186-2194,共9页
身份-矢量(identity-vector,i-vector)方法作为说话人确认领域中的主流方法之一,能够通过学习总变化空间来获取有效的低维说话人特征——i-vector特征.但是当开发集数据不充足时,会导致学习到的总变化空间模型误差较大;同时,还无法有效... 身份-矢量(identity-vector,i-vector)方法作为说话人确认领域中的主流方法之一,能够通过学习总变化空间来获取有效的低维说话人特征——i-vector特征.但是当开发集数据不充足时,会导致学习到的总变化空间模型误差较大;同时,还无法有效确认此时的总变化空间是否因为预先设置的维度过高而学到了冗余信息.为此,本文将贝叶斯主成分分析(Bayesian Principal Component Analysis,BPCA)引入总变化空间的学习过程中,利用其来为总变化空间引入更多的先验信息,从而对开发集数据中包含的信息进行补充,并在先验信息的约束下削弱总变化空间中无效维的影响.实验结果表明,当开发集数据不充足时,相比于传统的总变化空间学习方法,BPCA方法能够有效提升说话人确认系统的识别性能. 展开更多
关键词 说话人确认 身份-矢量(i-vector) 总变化空间 贝叶斯主成分分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部