The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the p...The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.展开更多
Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimension...Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.展开更多
基金Project(BX2021379)supported by the China National Postdoctoral Program for Innovative Talents。
文摘The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.
基金supported by the Aerospace International Innovation Talent Cultivation Project of Program China Scholarship Councilthe National Natural Science Foundation of China(Grant No.11502291)
文摘Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.