期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于脑功能网络深度学习的车内噪声评价模型
1
作者
邹丽媛
王宏
宋桂秋
《机械与电子》
2020年第5期76-80,共5页
研究并构建了一个结合脑电信号处理与深度学习的车内噪声评价模型,该算法通过自我学习实现脑电信号特征提取,使用同步似然方法构建delta、alpha和beta频段的脑功能网络。将3个频带的脑功能网络扁平化处理后作为输入,通过无监督的堆栈自...
研究并构建了一个结合脑电信号处理与深度学习的车内噪声评价模型,该算法通过自我学习实现脑电信号特征提取,使用同步似然方法构建delta、alpha和beta频段的脑功能网络。将3个频带的脑功能网络扁平化处理后作为输入,通过无监督的堆栈自编码器(RSAE)自主提取脑功能网络的特征。通过几个高阶特征训练前后对比,证实了RSAE自主学习到与噪声评价有关的脑神经特征。最终将RSAE与普遍使用的SVM回归模型进行比较,同时将脑功能网络与传统的基于心理声学声音品质的车内噪声评价进行对比。结果表现,所提出的脑功能网络RSAE模型的平均决定系数高达98.69%,明显优于其他方法。
展开更多
关键词
车内噪声评价
堆栈自编码器
脑功能网络分析
同步似然
下载PDF
职称材料
题名
基于脑功能网络深度学习的车内噪声评价模型
1
作者
邹丽媛
王宏
宋桂秋
机构
东北大学机械工程与自动化学院
辽宁水利职业学院
出处
《机械与电子》
2020年第5期76-80,共5页
基金
辽宁省高等学校创新团队项目(LT2014006)
国家重点研发计划(2017YFB1300300)。
文摘
研究并构建了一个结合脑电信号处理与深度学习的车内噪声评价模型,该算法通过自我学习实现脑电信号特征提取,使用同步似然方法构建delta、alpha和beta频段的脑功能网络。将3个频带的脑功能网络扁平化处理后作为输入,通过无监督的堆栈自编码器(RSAE)自主提取脑功能网络的特征。通过几个高阶特征训练前后对比,证实了RSAE自主学习到与噪声评价有关的脑神经特征。最终将RSAE与普遍使用的SVM回归模型进行比较,同时将脑功能网络与传统的基于心理声学声音品质的车内噪声评价进行对比。结果表现,所提出的脑功能网络RSAE模型的平均决定系数高达98.69%,明显优于其他方法。
关键词
车内噪声评价
堆栈自编码器
脑功能网络分析
同步似然
Keywords
vehicle interior noise evaluation
stack AutoEncoder
brain network analysis
synchronous likelihood
分类号
R318 [医药卫生—生物医学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于脑功能网络深度学习的车内噪声评价模型
邹丽媛
王宏
宋桂秋
《机械与电子》
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部