Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consu...Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consumption of high-speed train is one of the essential issues for the development of the desirable train system. Aerodynamic drag on the traveling train is divided into pressure drag and friction one. Pressure drag of train is the force caused by the pressure distribution on the train along the reverse running direction. Friction drag of train is the sum of shear stress, which is the reverse direction of train running direction. In order to reduce the aerodynamic drag, adopting streamline shape of train is the most effective measure. The velocity of the train is related to its length and shape. The outer wind shields can reduce train's air drag by about 15%. At the same time, the train with bottom cover can reduce the air drag by about 50%, compared with the train without bottom plate or skirt structure.展开更多
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the str...This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the strata disturbance scope, the strata displacement angle was used to calculate the protection pillar width. A numerical model was built considering the field geological conditions. In simulation, the mining stress borderline was defined as the contour where the induced stress is 1.5 times of the original stress. Simulation results show the mining stress borderline of the lateral roadway extended 91.7 m outward after repeated mining. Then the original stress increased, deforming the road- way of interest. This deformation agreed with the in situ observations. Moreover, the strata displacement angle changed due to repeated mining. Therefore, reselection of the displacement angle was required to design the protective pillar width. Since a constant strata displacement angle was used in traditional design, the orooosed method was beneficial in field cases.展开更多
A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminu...A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.展开更多
Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) con...Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) conducted a field trial to investigate the suitability of perpetual pavement concept for Kansas highway pavements. The experiment involved construction of four thick pavement structures. To verify the approach of designing perpetual pavements on the basis of an endurance strain limit, the pavements were instrumented with gauges for measuring tensile strains at the bottom of asphalt base layers at various speeds. Pavements were also instrumented with pressure cells to measure stress on the top of subgrade. Pavement response measurements under known vehicle load were performed in August 2006. FWD (Falling-weight deflectometer) was also used to collect deflection data at 15 m intervals on the same date. FWD first-sensor (center) deflections were normalized and corrected to 20 ℃ temperature based on measured mid-depth pavement temperature. The result shows that strain and stress measurements show significant amount of variations. Measurements in the thickest section are the most consistent. The higher the traffic speed, the lower the strains and stresses. The difference between strains and stresses at 30 kmhar and 65 km/hr is higher than the difference between 65 km/hr and 95 kin/hr. This shows the effect of speed on stresses and strains decreases as the speed increases. Softer binder in the asphalt base layer results in lower strains, which confirms that softer binder results in higher fatigue life.展开更多
In this article, the replacement of the car battery by a hybrid supply is proposed. The specific power of the supercapacitor makes it very attractive for the startup of the car. This component has very high lifetime ...In this article, the replacement of the car battery by a hybrid supply is proposed. The specific power of the supercapacitor makes it very attractive for the startup of the car. This component has very high lifetime (1 million of cycles) which can improve the lifetime of the supply (for starter or starter-alternator). After the identification of the internal combustion engine torque developed at the startup, the validation of the hybrid supply interest is proved by the simulation of the system using Matlab-Simulink software. Finally, a test bench is developed in the laboratory to validate the simulation results.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ...On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.展开更多
As an alternative power source for hybrid electrical vehicle(HEV), electric generating system(EGS) driven by sphere cam engine(SCE) is said to own higher power density and integration. In this work, the structure and ...As an alternative power source for hybrid electrical vehicle(HEV), electric generating system(EGS) driven by sphere cam engine(SCE) is said to own higher power density and integration. In this work, the structure and working principle of EGS were introduced, based on which the advantages of EGS were displayed. The profile of sphere cam was achieved after the desired motion of piston was given. After establishing the dynamic model of power transmission mechanism, the characteristics of cam-roller mechanism were studied. The results show that the optimal cam profile of SCE is a sinusoid curve which has two peaks and two valleys and a mean pressure angle of 47.19°. Because of the special cam shape, the trace of end surface center of piston is an eight-shape curve on a specific sphere surface. SCE running at speed of 3000 r/min can generate the power of 33.81 kW, which could satisfy the need of HEVs. However, the force between cylinder and piston skirt caused by Coriolis acceleration can reach up to 1182 N, which leads to serious wear between cylinder liner and piston skirt and may shorten the lifespan of SCE.展开更多
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of...Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.展开更多
Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts f...Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm^2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells.展开更多
The air cushion vehicle (ACV) sea keeping characteristic under different wave directions with the operation resistance is discussed with the couples of the heave, pitch roll motion and the pressure of the cushion. In ...The air cushion vehicle (ACV) sea keeping characteristic under different wave directions with the operation resistance is discussed with the couples of the heave, pitch roll motion and the pressure of the cushion. In previous researches, only wave and cross wave direction were discussed. Then a Matlab program is made to calculate the united frequency responses of heave, pitch and roll amplitude of the craft, under different wave frequencies and different wave directions. The results of the research depict some dangerous situations under which the sympathetic vibration happens in heave, pitch and roll motion and the amplitudes are extremely higher than those under the ordinary conditions. These results will be helpful in ACV design and operation.展开更多
基金Project(2001AA505000) supported by the National High-Tech Research and Development of China
文摘Aerodynamic drag is proportional to the square of speed. With the increase of the speed of train, aerodynamic drag plays an important role for high-speed train. Thus, the reduction of aerodynamic drag and energy consumption of high-speed train is one of the essential issues for the development of the desirable train system. Aerodynamic drag on the traveling train is divided into pressure drag and friction one. Pressure drag of train is the force caused by the pressure distribution on the train along the reverse running direction. Friction drag of train is the sum of shear stress, which is the reverse direction of train running direction. In order to reduce the aerodynamic drag, adopting streamline shape of train is the most effective measure. The velocity of the train is related to its length and shape. The outer wind shields can reduce train's air drag by about 15%. At the same time, the train with bottom cover can reduce the air drag by about 50%, compared with the train without bottom plate or skirt structure.
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
基金Financial supports from the National Natural Science Foundation of China (No. 51204160)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)+1 种基金the National Science and Technology Support Program of China(No.2012BAK04B06)the Project Funded by State Key Laboratory of Coal Resources and Safe Mining of China(No.SKLCRSM11X03)
文摘This paper analyzed the deformation mechanism in lateral roof roadway of the Ding Wu-3 roadway which was disturbed by repeated mining of close coal seams Wu-8 and Wu-10 in Pingdingshan No. 1 Mine. To determine the strata disturbance scope, the strata displacement angle was used to calculate the protection pillar width. A numerical model was built considering the field geological conditions. In simulation, the mining stress borderline was defined as the contour where the induced stress is 1.5 times of the original stress. Simulation results show the mining stress borderline of the lateral roadway extended 91.7 m outward after repeated mining. Then the original stress increased, deforming the road- way of interest. This deformation agreed with the in situ observations. Moreover, the strata displacement angle changed due to repeated mining. Therefore, reselection of the displacement angle was required to design the protective pillar width. Since a constant strata displacement angle was used in traditional design, the orooosed method was beneficial in field cases.
基金Project(50934011) supported by the National Natural Science Foundation of ChinaProject(20080430085) supported by the China Postdoctoral Science Foundation
文摘A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.
文摘Increasing traffic volumes and loads as well as public expectation for a long-lasting transportation infrastructure have necessitated designing perpetual pavements. The KDOT (Kansas Department of Transportation) conducted a field trial to investigate the suitability of perpetual pavement concept for Kansas highway pavements. The experiment involved construction of four thick pavement structures. To verify the approach of designing perpetual pavements on the basis of an endurance strain limit, the pavements were instrumented with gauges for measuring tensile strains at the bottom of asphalt base layers at various speeds. Pavements were also instrumented with pressure cells to measure stress on the top of subgrade. Pavement response measurements under known vehicle load were performed in August 2006. FWD (Falling-weight deflectometer) was also used to collect deflection data at 15 m intervals on the same date. FWD first-sensor (center) deflections were normalized and corrected to 20 ℃ temperature based on measured mid-depth pavement temperature. The result shows that strain and stress measurements show significant amount of variations. Measurements in the thickest section are the most consistent. The higher the traffic speed, the lower the strains and stresses. The difference between strains and stresses at 30 kmhar and 65 km/hr is higher than the difference between 65 km/hr and 95 kin/hr. This shows the effect of speed on stresses and strains decreases as the speed increases. Softer binder in the asphalt base layer results in lower strains, which confirms that softer binder results in higher fatigue life.
文摘In this article, the replacement of the car battery by a hybrid supply is proposed. The specific power of the supercapacitor makes it very attractive for the startup of the car. This component has very high lifetime (1 million of cycles) which can improve the lifetime of the supply (for starter or starter-alternator). After the identification of the internal combustion engine torque developed at the startup, the validation of the hybrid supply interest is proved by the simulation of the system using Matlab-Simulink software. Finally, a test bench is developed in the laboratory to validate the simulation results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
文摘On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.
基金Projects(51475464,51175500,51575519)supported by the National Natural Science Foundation of China
文摘As an alternative power source for hybrid electrical vehicle(HEV), electric generating system(EGS) driven by sphere cam engine(SCE) is said to own higher power density and integration. In this work, the structure and working principle of EGS were introduced, based on which the advantages of EGS were displayed. The profile of sphere cam was achieved after the desired motion of piston was given. After establishing the dynamic model of power transmission mechanism, the characteristics of cam-roller mechanism were studied. The results show that the optimal cam profile of SCE is a sinusoid curve which has two peaks and two valleys and a mean pressure angle of 47.19°. Because of the special cam shape, the trace of end surface center of piston is an eight-shape curve on a specific sphere surface. SCE running at speed of 3000 r/min can generate the power of 33.81 kW, which could satisfy the need of HEVs. However, the force between cylinder and piston skirt caused by Coriolis acceleration can reach up to 1182 N, which leads to serious wear between cylinder liner and piston skirt and may shorten the lifespan of SCE.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852 and 30821003)the Special Fund for Agriculture Profession (Grant No. 201103003)
文摘Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.
基金Acknowledgements Work at Beijing Institute of Technology was supported by the National Natural Science Foundation of China (Nos. 23171023 and 50972017) and Doctoral Program of the Ministry of Education of China (No. 20101101110026) Work at Peking University was supported by the NSFC-RGC Joint Research Scheme (No. 51361165201), the National Natural Science Foundation of China (Nos. 51125001 and 51172005), Beijing Natural Science Foundation (No. 2122022) and Doctoral Program of the Ministry of Education of China (No. 20120001110078). Deanship of Scientific Research at King Saud University through Prolific Research Group Project (No. PRG-1436-25).
文摘Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm^2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells.
文摘The air cushion vehicle (ACV) sea keeping characteristic under different wave directions with the operation resistance is discussed with the couples of the heave, pitch roll motion and the pressure of the cushion. In previous researches, only wave and cross wave direction were discussed. Then a Matlab program is made to calculate the united frequency responses of heave, pitch and roll amplitude of the craft, under different wave frequencies and different wave directions. The results of the research depict some dangerous situations under which the sympathetic vibration happens in heave, pitch and roll motion and the amplitudes are extremely higher than those under the ordinary conditions. These results will be helpful in ACV design and operation.