期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Investigation on nonlinear rolling dynamics of amphibious vehicle under wind and wave load
1
作者 马新谋 常列珍 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期275-281,共7页
Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system.Considering nonlinear damping and restoring moments,a nonlinear rolling dynamical equation of amp... Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system.Considering nonlinear damping and restoring moments,a nonlinear rolling dynamical equation of amphibious vehicle is established.The Hamiltonian function of the nonlinear rolling dynamical equation of amphibious vehicle indicate when subjected to joint action of periodic wave excitation and crosswind,the nonlinear rolling system degenerates into being asymmetric.The threshold value of excited moment of wave and wind is analyzed by the Melnikov method.Finally,the nonlinear rolling motion response and phase portrait were simulated by four order Runge-Kutta method at different excited moment parameters. 展开更多
关键词 amphibious vehicle nonlinear rolling motion Melnikov method nonlinear dynamics crosswind load
下载PDF
Optimization of suspension system of heavy off-road vehicle for stability enhancement using integrated anti-roll bar and coiling spring mechanism 被引量:3
2
作者 Ilgar JAVANSHIR Andino MASELENO +1 位作者 Shahin TASOUJIAN Majid OVEISI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2289-2298,共10页
Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability... Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability and controllability.Motion control,stability maintenance and ride comfort improvement are fundamental issues in design of suspension system of off-road vehicles.In this work,a dependent suspension system mostly used in off-road vehicles is modeled using Trucksim software.Then,geometric parameters of suspension system are optimized using integrated anti-roll bar and coiling spring in a way that ride comfort,handling and stability of vehicle are improved.The simulation results of suspension system and variations of geometric parameters due to road roughness and different steering angles are presented in Trucksim and effects of optimization of suspension system during various driving maneuvers in both optimized and un-optimized conditions are compared.The simulation results indicate that the type of suspension system and geometric parameters have significant effect on vehicle performance. 展开更多
关键词 off-road vehicles HANDLING anti-roll bar coil spring vehicle lateral dynamic Trucksim software
下载PDF
Spatial gust impact analysis on safety and comfort of a train crossing cable-stayed bridge combining statistical method 被引量:1
3
作者 ZHANG Yun-fei LI Li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2605-2620,共16页
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi... In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge. 展开更多
关键词 wind-train-bridge dynamic system high-speed train crosswind environment single-tower cable-stayed bridge running safety running stability
下载PDF
Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds 被引量:17
4
作者 HE Xu-hui ZUO Tai-hui +2 位作者 ZOU Yun-feng YAN Lei TANG Lin-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2465-2478,共14页
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur... In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section. 展开更多
关键词 high-speed train viaducts aerodynamic characteristics turbulent crosswinds wind attack angle train section shape track position pressure measurement
下载PDF
Review of aerodynamics of high-speed train-bridge system in crosswinds 被引量:20
5
作者 HE Xu-hui LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1054-1073,共20页
Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China. Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodyn... Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China. Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodynamic assessment, this paper primarily reviews five meaningful progresses on the aerodynamics of the train-bridge system done by Wind Tunnel Laboratory of Central South University in the past several years. Firstly, the flow around the train and the uncertainty origin of the aerodynamic assessment are described from the fluid mechanism point of view. After a brief introduction of the current aerodynamic assessment methods with their strengths and weaknesses, a new-developed TRAIN-INFRASTRUCTURE rig with the maximum launch speed of 35 m/s is introduced. Then, several benchmark studies are presented, including the statistic results of the characterized geometry parameters of the currently utilized bridge-decks, the aerodynamics of the train, and the aerodynamics of the flat box/truss bridge-decks. Upon compared with the foregoing mentioned benchmarks, this paper highlights the aerodynamic interference of the train-bridge system associated with its physical natures. Finally, a porosity-and orientation-adjustable novel wind barrier with its effects on the aerodynamics of the train-bridge system is discussed. 展开更多
关键词 high-speed railway train-bridge system wind barrier crosswinds aerodynamic assessment wind tunnel test
下载PDF
Application of signal processing and support vector machine to transverse cracking detection in asphalt pavement 被引量:3
6
作者 YANG Qun ZHOU Shi-shi +1 位作者 WANG Ping ZHANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2451-2462,共12页
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n... Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system. 展开更多
关键词 asphalt pavement transverse crack detection vehicle vibration support vector machine classification model
下载PDF
Influence of rainfall on skid resistance performance and driving safety conditions of asphalt pavements 被引量:11
7
作者 Chen Xiaobing Wang Juntian +2 位作者 Liu Han Xu Libin Zhao Ronglong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期482-490,共9页
To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based ... To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities. 展开更多
关键词 rainfall intensity pavement transverse and longitudinal slopes skid resistance driving safety water film thickness(WFT) British pendulum number(BPN) stopping sight distance(SSD)
下载PDF
Map-based control method for vehicle stability enhancement 被引量:2
8
作者 Moon-Young Yoon Seung-Hwan Baek +1 位作者 Kwang-Suk Boo Heung-Seob Kim 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期114-120,共7页
This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r... This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control. 展开更多
关键词 model-referenced control map-based control vehicle stability yaw moment
下载PDF
Lateral Stability Improvement of Car-Trailer Systems Using Active Trailer Braking Control 被引量:1
9
作者 Tao Sun Yuping He Ebrahim Esmailzadeh Jing Ren 《Journal of Mechanics Engineering and Automation》 2012年第9期555-562,共8页
An active trailer braking controller to improve the lateral stability of car-trailer systems is presented. The special and complex structures of these types of vehicles exhibit unique unstable motion behavior, such as... An active trailer braking controller to improve the lateral stability of car-trailer systems is presented. The special and complex structures of these types of vehicles exhibit unique unstable motion behavior, such as the trailer swing, jack-knifing and rollover. These unstable motion modes may lead to fatal accidents. The effects of passive mechanical parameters on the stability of car-trailer systems have been thoroughly investigated. Some of the passive parameters, such as the center of gravity of the trailer, may be drastically varied during various operating conditions. Even for an optimal design of a car-trailer system, based on a specific passive parameter set, the lateral stability cannot be guaranteed. In order to improve the lateral stability of car-trailer systems, an active trailer braking controller is designed using the Linear Quadratic Regular (LQR) technique. To derive the controller, a vehicle model with 3 Degrees Of Freedom (DOF) is developed to represent the car-trailer system. A single lane-change maneuver has been simulated to examine the performance of the controller and the numerical results are compared with those of the baseline design. The benchmark investigation indicates that the optimal controller based on the LQR technique can effectively improve the high-speed lateral stability of the car-trailer system. 展开更多
关键词 Car-trailer systems active trailer braking control LQR (linear quadratic regular) controller high-speed lateral stability.
下载PDF
Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind 被引量:18
10
作者 刘堂红 张洁 《Journal of Central South University》 SCIE EI CAS 2013年第3期830-836,共7页
The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e... The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another. 展开更多
关键词 high-speed train cross wind special landform aerodynamic performance
下载PDF
Lightweight design of automotive front crossbeam assembly
11
作者 Yao Zaiqi Liu Qiang +5 位作者 Ma Fangwu Zhao Fuquan Liu Zongwei Wang Guan Wan Yinhui Li Luoxing 《Engineering Sciences》 EI 2012年第6期32-37,共6页
This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper detail... This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper details the design of extruded aluminum-alloy front crossbeam assembly from the perspectives of optimal design, performance verifi- cation, lightweight effect and cost control. The following results in the technical and engineering applications have been achieved. The weight of the developed aluminum-alloy crossbeam can be reduced by 51%. The simulated analysis of the collision rigid wall, the 40 % offset hammering as well as the static crush test of energy-absorbing box show that af- ter reasonable materials matching and size optimization of the crossbeam and the energy-absorbing boxes, the level of crash safety can be improved. The price of aluminum-alloy front crossbeam can be lowered by using the extruding die in- stead of the stamping die to reduce the die cost-sharing. 展开更多
关键词 ALUMINUM-ALLOY front crossbeam energy-absorbing box optimal design collision safety
下载PDF
粗犷豪放 野性魅力:1/24南京依维柯NJ2045军用越野车
12
《汽车杂志》 2002年第11期23-23,共1页
关键词 南京依维柯NJ2045军用超野车 车横 收藏 仿真 合资公司 技术性能
原文传递
Lateral stability region conservativeness estimation and torque distribution for FWIA electric vehicle steering 被引量:5
13
作者 YIN Guo Dong JIN Xian Jian +1 位作者 QING Zhi Yong BIAN Chen Tong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第4期669-676,共8页
Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dyna... Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters. 展开更多
关键词 four-wheel independently actuated electric vehicle torque distribution vehicle steering stability region estimation
原文传递
Effects of angle of attack on wing rock motion induced by the flows over slender body with low swept wing 被引量:1
14
作者 XU SiWen DENG XueYing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第4期67-74,共8页
The patterns of wing rock motion at 52.5° angle of attack have already been investigated in detail (Rong, 2009; Wang, 2010). These patterns are completely different from those at other angles of attack. This ph... The patterns of wing rock motion at 52.5° angle of attack have already been investigated in detail (Rong, 2009; Wang, 2010). These patterns are completely different from those at other angles of attack. This phenomenon indicates that angle of attack affects wing rock motion. The present study alms to examine the different patterns of wing rock motion at different angles of attack. The flow mechanisms of the motion patterns are also revealed, especially the uncommanded lateral motions, including wing rock and lateral deflection, induced by regular asymmetric separated flow from wings at low angles of attack and fore- body asymmetric vortices at angles of attack of 27.5°〈 α 〈 70°. The test conditions, including the testing Reynolds number, wind tunnel, experimental techniques, and test model, are all the same as those used in a previous study at a = 52.5°. Finally, the experimental technique of rotating nose of the model to suppress the wing rock or lateral deflection, which is induced by forebody asymmetric vortex flow, is applied. The uncommanded lateral motions are successfully suppressed by this technique. 展开更多
关键词 uncommanded motions forebody asymmetric vortices effect of angle of attack artificial tip perturbation flow control
原文传递
Sea Keeping Analysis of Air Cushion Vehicle with Different Wave Angles under the Operation Resistance
15
作者 周佳 唐文勇 张圣坤 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第4期471-475,共5页
The air cushion vehicle (ACV) sea keeping characteristic under different wave directions with the operation resistance is discussed with the couples of the heave, pitch roll motion and the pressure of the cushion. In ... The air cushion vehicle (ACV) sea keeping characteristic under different wave directions with the operation resistance is discussed with the couples of the heave, pitch roll motion and the pressure of the cushion. In previous researches, only wave and cross wave direction were discussed. Then a Matlab program is made to calculate the united frequency responses of heave, pitch and roll amplitude of the craft, under different wave frequencies and different wave directions. The results of the research depict some dangerous situations under which the sympathetic vibration happens in heave, pitch and roll motion and the amplitudes are extremely higher than those under the ordinary conditions. These results will be helpful in ACV design and operation. 展开更多
关键词 air cushion vehicle (ACV) sea keeping characteristic three phase coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部