In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur...In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.展开更多
A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and incr...A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.展开更多
To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization meth...To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization methodology was proposed,which was focused on the track geometry itself,without the consideration of the physical characteristic of the cyclist,assuming that less vertical curvature values correspond to less riding time. The riding performance formulae were obtained with the variables of riding time,riding velocity and vertical curvature of cycling track. Finally,with the refined adjustment on the vertical curvatures with the help of cycling track design software and considering the effect of horizontal alignments,the optimized models were finalized. It is clearly seen that these optimized models take the form of quartic parabola and are verified to achieve 0.005-0.021 s improvement in the event of 200 m time trial.展开更多
基金Projects(51808563,51925808)supported by the National Natural Science Foundation of ChinaProject(KLWRTBMC18-03)supported by the Open Research Fund of the Key Laboratory of Wind Resistance Technology of Bridges of ChinaProject(2017YFB1201204)supported by the National Key R&D Program of China。
文摘In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.
基金Project(2012CB725400)supported by the National Key Basic Research Program of ChinaProject(2011AA110303)supported by the National High Technology Research and Development Program of ChinaProject(YBPY1211)supported by the Scientific Research Foundation of the Graduate School of Southeast University,China
文摘A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.
基金Project(BZ2008056) supported by Jiangsu International Cooperative Research Program in 2008, China
文摘To improve the possible superelevation runoff models for the cycling track design,at first,two existing representative superelevation runoff models used in China were investigated and fitted. Then,an optimization methodology was proposed,which was focused on the track geometry itself,without the consideration of the physical characteristic of the cyclist,assuming that less vertical curvature values correspond to less riding time. The riding performance formulae were obtained with the variables of riding time,riding velocity and vertical curvature of cycling track. Finally,with the refined adjustment on the vertical curvatures with the help of cycling track design software and considering the effect of horizontal alignments,the optimized models were finalized. It is clearly seen that these optimized models take the form of quartic parabola and are verified to achieve 0.005-0.021 s improvement in the event of 200 m time trial.