This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively...This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In ...With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.展开更多
This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for esti...This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for estimating RUC components suitable for the Portuguese road network. These results are part of a research which aimed to obtain a Road User Cost Model to be used as a tool in road management systems. This model is different from other models by the fact that it includes a simple formulation that allows calibration and calculation of cost parameters, for any year, in a simple and fast way, providing trustworthy results. The required data is already available in Portuguese institutions, allowing periodic revision of cost parameters to insure accuracy.展开更多
Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the sceni...Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.展开更多
Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersectio...Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersections,a dynamic data-driven flow prediction model was developed.The model consists of two prediction components based on the signal states(red or green) for each movement at an upstream intersection.The characteristics of each signal state were carefully examined and the corresponding travel time from the upstream intersection to the approach in question at the downstream intersection was predicted.With an online turning proportion estimation method,along with the predicted travel times,the anticipated vehicle arrivals can be forecasted at the downstream intersection.The model performance was tested at a set of two signalized intersections located in the city of Gainesville,Florida,USA,using the CORSIM microscopic simulation package.Analysis results show that the model agrees well with empirical arrival data measured at 10 s intervals within an acceptable range of 10%-20%,and show a normal distribution.It is reasonably believed that the model has potential applicability for use in truly proactive real-time traffic adaptive signal control systems.展开更多
文摘This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
基金the support from NSFC under Grant 61222105the 863 Plan of China under Grant 2014AA01A706+3 种基金the project of State Key Lab under Grant RCS2012ZT013the Key Project of Chinese Ministry of Education under Grant 313006the Key Project for Railway Ministry of China under Grant 2012X008-Athe project of State Key Lab under Grant No. RCS2011ZZ002
文摘With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.
文摘This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for estimating RUC components suitable for the Portuguese road network. These results are part of a research which aimed to obtain a Road User Cost Model to be used as a tool in road management systems. This model is different from other models by the fact that it includes a simple formulation that allows calibration and calculation of cost parameters, for any year, in a simple and fast way, providing trustworthy results. The required data is already available in Portuguese institutions, allowing periodic revision of cost parameters to insure accuracy.
基金Project(51208261)supported by the National Natural Science Foundation of ChinaProject(12YJCZH062)supported by the Ministry of Education of Humanities and Social Science of ChinaProject(30920140132033)supported by the Fundamental Research Funds for the Central Universities,China
文摘Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.
基金Project(71101109) supported by the National Natural Science Foundation of China
文摘Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersections,a dynamic data-driven flow prediction model was developed.The model consists of two prediction components based on the signal states(red or green) for each movement at an upstream intersection.The characteristics of each signal state were carefully examined and the corresponding travel time from the upstream intersection to the approach in question at the downstream intersection was predicted.With an online turning proportion estimation method,along with the predicted travel times,the anticipated vehicle arrivals can be forecasted at the downstream intersection.The model performance was tested at a set of two signalized intersections located in the city of Gainesville,Florida,USA,using the CORSIM microscopic simulation package.Analysis results show that the model agrees well with empirical arrival data measured at 10 s intervals within an acceptable range of 10%-20%,and show a normal distribution.It is reasonably believed that the model has potential applicability for use in truly proactive real-time traffic adaptive signal control systems.