Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribu...Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribution caused by the fire in the platform. The ventilation in the station is set to be an air supply mod in the lobby and an air exhaustion mod in the platform. One-side main tunnel ventilation (7,000 m3/min) is applied to operate in the tunnel. The fire is assumed to break out in the middle of train parked in the platform tunnel. Two kinds of fire strength are used. One is 10 MW and the other is 20 MW. Ventilation diffusers in the station are modeled as 317 square shapes & four rectangular shapes in the lobby and platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for parallel computation. Large eddy simulation method is applied to solve the momentum equation. The behavior of CO is calculated according to different fire strengths and compared with each other.展开更多
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
文摘Effect of different fire strengths on the smoke distribution in the subway station is investigated. Shin-Gum-Ho station (line #5) in Seoui is selected as a case study for variation of CO (carbon monoxide) distribution caused by the fire in the platform. The ventilation in the station is set to be an air supply mod in the lobby and an air exhaustion mod in the platform. One-side main tunnel ventilation (7,000 m3/min) is applied to operate in the tunnel. The fire is assumed to break out in the middle of train parked in the platform tunnel. Two kinds of fire strength are used. One is 10 MW and the other is 20 MW. Ventilation diffusers in the station are modeled as 317 square shapes & four rectangular shapes in the lobby and platform. The total of 7.5 million grids is generated and whole domain is divided to 22 blocks for parallel computation. Large eddy simulation method is applied to solve the momentum equation. The behavior of CO is calculated according to different fire strengths and compared with each other.