期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器视觉的车身缺陷识别与分类方法 被引量:8
1
作者 江录春 王稼祥 +2 位作者 陈正涛 曹琪 王皓 《机械设计与研究》 CSCD 北大核心 2021年第3期137-142,148,共7页
针对目前国内外汽车车身涂装工艺后缺陷识别自动化程度低,难以进行非接触高精度检测等问题,提出了一种结合二维视觉、三维视觉进行缺陷识别,通过卷积神经网络进行分类的方法。首先基于最大类间方差法和特征提取算法实现缺陷二维坐标的确... 针对目前国内外汽车车身涂装工艺后缺陷识别自动化程度低,难以进行非接触高精度检测等问题,提出了一种结合二维视觉、三维视觉进行缺陷识别,通过卷积神经网络进行分类的方法。首先基于最大类间方差法和特征提取算法实现缺陷二维坐标的确定,算法受光照影响较小;其次基于卷积神经网络,实现对黑胶、划痕、凸点等三种常见缺陷类型的分类;然后基于RANSC聚类算法及PCA主成分分析,实现对车身平面拟合及缺陷法向量信息的确定;最后搭建了实验系统,通过双机器人标定及三维手眼标定实现对基准坐标系的坐标转换,实现对缺陷几何中心坐标、法向量、类型等信息的确定,系统的平均误差远小于现有打磨设备的尺寸。实验结果表面本方案可为后续自动化打磨设备提供工艺优化及打磨处理的数据输入。 展开更多
关键词 车身缺陷识别 缺陷分类 机器视觉 点云 手眼标定
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部