针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节...针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节点将消息传递距离的不同选择那些能量高的节点作为中转节点,并结合节点的分布区域和当前速度,尽量将多个消息副本传递给覆盖不同方向的节点,避免消息传递的局部性。仿真结果表明,与当前典型延迟容忍网络的路由算法相比,ERLP算法在传输成功率、平均延迟时间上具有较大提升。展开更多
The China's high-speed railway is experiencing a rapid growth.Its operating mileage and the number of operating trains will exceed 45 000 km and 1500 trains by 2015,respectively.During the long range and constant ...The China's high-speed railway is experiencing a rapid growth.Its operating mileage and the number of operating trains will exceed 45 000 km and 1500 trains by 2015,respectively.During the long range and constant high-speed operation,the high-speed trains have extremely complex and varied work conditions.Such a situation creates a huge demand for high-speed train on-board monitoring.In this paper,architecture for high-speed train on-board monitoring sensor network is proposed.This architecture is designed to achieve the goals of reliable sensing,scalable data transporting,and easy management.The three design goals are realized separately.The reliable sensing is achieved by deploying redundant sensor nodes in the same components.Then a hierarchal transporting scheme is involved to meet the second goal.Finally,an electronic-tag based addressing method is introduced to solve the management problem.展开更多
文摘针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节点将消息传递距离的不同选择那些能量高的节点作为中转节点,并结合节点的分布区域和当前速度,尽量将多个消息副本传递给覆盖不同方向的节点,避免消息传递的局部性。仿真结果表明,与当前典型延迟容忍网络的路由算法相比,ERLP算法在传输成功率、平均延迟时间上具有较大提升。
基金Project supported by the National Key Technology R&D Program(No.2011BAG05B00)the National Natural Science Foundation of China(No.61070155)
文摘The China's high-speed railway is experiencing a rapid growth.Its operating mileage and the number of operating trains will exceed 45 000 km and 1500 trains by 2015,respectively.During the long range and constant high-speed operation,the high-speed trains have extremely complex and varied work conditions.Such a situation creates a huge demand for high-speed train on-board monitoring.In this paper,architecture for high-speed train on-board monitoring sensor network is proposed.This architecture is designed to achieve the goals of reliable sensing,scalable data transporting,and easy management.The three design goals are realized separately.The reliable sensing is achieved by deploying redundant sensor nodes in the same components.Then a hierarchal transporting scheme is involved to meet the second goal.Finally,an electronic-tag based addressing method is introduced to solve the management problem.