基于等效电路模型的一类车载动力电池剩余荷电状态(state of charge,SOC)的估算方法,其估算精度高度依赖于模型精度,模型精度又正比于模型复杂度,以至于难以较好地应用于嵌入式控制单元.提出复杂度相对较低、能够自适应确定最优模型阶...基于等效电路模型的一类车载动力电池剩余荷电状态(state of charge,SOC)的估算方法,其估算精度高度依赖于模型精度,模型精度又正比于模型复杂度,以至于难以较好地应用于嵌入式控制单元.提出复杂度相对较低、能够自适应确定最优模型阶次的全新等效电路模型——基于阶次自适应AR模型的车载动力电池等效电路灰箱模型.基于此灰箱模型,给出锂离子电池SOC的滑模观测器设计推导及能观性、收敛性证明.结果表明,本文提出的基于阶次自适应AR等效电路灰箱模型的滑模观测器SOC估算方法(adaptive autoregressive-sliding mode observer,AAR-SMO)具有低模型复杂度、高精度、强鲁棒性及快速收敛等性能.展开更多