期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
车载设备故障导致CTCS等级转换的建模与仿真 被引量:3
1
作者 胡晓辉 王元鹏 +1 位作者 陈永 刘全 《计算机工程与应用》 CSCD 北大核心 2016年第18期208-213,共6页
采用随机Petri网理论对车载故障可能导致列控系统降级的场景和列控系统在不同等级之间发生转换的场景进行了研究,以保证并提高列车运行环境的安全性。在模型中,对可能导致车载设备故障的三种因素:传输错误、越区切换、连接丢失所引发的... 采用随机Petri网理论对车载故障可能导致列控系统降级的场景和列控系统在不同等级之间发生转换的场景进行了研究,以保证并提高列车运行环境的安全性。在模型中,对可能导致车载设备故障的三种因素:传输错误、越区切换、连接丢失所引发的车载设备和备用车载设备均故障所引发降级的场景,进行了建模和分析;并在降级场景发生后,列控设备通过尝试连接GSM-R无线网络升级为CTCS-3级进行了建模和分析。用Time Net4.0平台对模型的正确性进行了仿真,得出了该模型在各种场景发生的概率分布曲线,对CTCS-3降级运行进行了定量与定性分析。 展开更多
关键词 车载设备故障 随机PETRI网 等级转换 建模
下载PDF
机车信号车载设备故障分析及维护
2
作者 陈磊 《中国科技期刊数据库 工业A》 2016年第11期167-167,共1页
随着经济和科学技术的发展,不断推动着我国铁路行业的发展。现在越来越多的先进技术进入铁路领域,铁路信号正向智能化、数字化的方向发展,一体化机车信号车载设备在铁路安全运营中发挥着非常重要的作用。
关键词 机车信号 车载设备故障 维护
下载PDF
Fault diagnosis for on-board equipment of train control system based on CNN and PSO-SVM hybrid model 被引量:1
3
作者 LU Renjie LIN Haixiang +3 位作者 XU Li LU Ran ZHAO Zhengxiang BAI Wansheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期430-438,共9页
Rapid and precise location of the faults of on-board equipment of train control system is a significant factor to ensure reliable train operation.Text data of the fault tracking table of on-board equipment are taken a... Rapid and precise location of the faults of on-board equipment of train control system is a significant factor to ensure reliable train operation.Text data of the fault tracking table of on-board equipment are taken as samples,and an on-board equipment fault diagnosis model is designed based on the combination of convolutional neural network(CNN)and particle swarm optimization-support vector machines(PSO-SVM).Due to the characteristics of high dimensionality and sparseness of fault text data,CNN is used to achieve feature extraction.In order to decrease the influence of the imbalance of the fault sample data category on the classification accuracy,the PSO-SVM algorithm is introduced.The fully connected classification part of CNN is replaced by PSO-SVM,the extracted features are classified precisely,and the intelligent diagnosis of on-board equipment fault is implemented.According to the test analysis of the fault text data of on-board equipment recorded by a railway bureau and comparison with other models,the experimental results indicate that this model can obviously upgrade the evaluation indexes and can be used as an effective model for fault diagnosis for on-board equipment. 展开更多
关键词 on-board equipment fault diagnosis convolutional neural network(CNN) unbalanced text data particle swarm optimization-support vector machines(PSO-SVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部