A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, com...A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.展开更多
Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a larg...Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.展开更多
Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-f...Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.展开更多
A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments ...A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.展开更多
Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimension...Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.展开更多
文摘A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.
文摘Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.
文摘Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC' s Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.
文摘A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.
基金supported by the Aerospace International Innovation Talent Cultivation Project of Program China Scholarship Councilthe National Natural Science Foundation of China(Grant No.11502291)
文摘Numerical investigation of a supersonic jet from the nose of a lifting-body vehicle opposing a hypersonic flow with the freestream Mach number being 8.0 at 40 km altitude was carried out by solving the three-dimensional, time-accurate Navier-Stokes equations with a hybrid meshes approach. Based on the analysis of the flow field structures and aerodynamic characteristics, the behaviours relevant to the LPM jet were discussed in detail, including the drag reduction effect, the periodic oscillation and the feedback loop. The obtained results show that the flow oscillation characteristic of the LPM jet is low-frequency and high-amplitude while that of the SPM jet is high-frequency and low-amplitude. Compared with the clearly dominant frequencies of the LPM jet, the SPM jet exhibits a broad-band structure. The LPM jet can sustain drag reduction effect until the angle of attack is 8°, and the lift-to-drag ratio of the vehicle is effectively improved by 6.95% at angle of attack of 6°. The self-sustained oscillation process was studied by a typical oscillating cycle of the drag force coefficient and the variation of the instantaneous pressure distribution,which reveals an off-axial flapping motion of the conical shear layer. The variation of the subsonic recirculation zone ahead of the vehicle nose strengthens the understanding of the jet behavior including the source of instability in the long penetration mode and the mechanism of the feedback loop. The aim of this paper is to advance the technology readiness level for the counterflowing jet applied as an active control technology in hypersonic flows by gaining a better insight of the flow physics.