This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r...This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control.展开更多
Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dyna...Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.展开更多
基金supported by a grant from Research year of Inje University in 2008(0001200811700)
文摘This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control.
基金The National Natural Science Foundation of China(Grant No.51105074)The Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University(Grant No.KF14192)The Fundamental Research Funds for the Central Universities and Jiangsu Province Postgraduate Scientific Research and Innovation Plan Projects(Grant No.KYLX_0103)
文摘Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.