The article design a vehicle monitoring terminal system based on μ C/OS and introduces the hardware system design of STM32F407 as the control core. On the basis of transplant μ C/OS operating system, the system soft...The article design a vehicle monitoring terminal system based on μ C/OS and introduces the hardware system design of STM32F407 as the control core. On the basis of transplant μ C/OS operating system, the system software architecture, application-layer multi- task and the priority has been designed, focuses on the use GPRS tasks, preparation methods GPS tasks. After experimental tests, the system is stable and reliable, the realization of real-time vehicle monitoring. System design methodology for embedded system application development has a certain rcfcrence value.展开更多
A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location b...A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.展开更多
A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The ...A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.展开更多
文摘The article design a vehicle monitoring terminal system based on μ C/OS and introduces the hardware system design of STM32F407 as the control core. On the basis of transplant μ C/OS operating system, the system software architecture, application-layer multi- task and the priority has been designed, focuses on the use GPRS tasks, preparation methods GPS tasks. After experimental tests, the system is stable and reliable, the realization of real-time vehicle monitoring. System design methodology for embedded system application development has a certain rcfcrence value.
基金Supported by the National Natural Science Foundation of China(No.61005034)China Postdoctoral Science Foundation and under Grant(No.2012M510768)the Science Foundation of Hebei Province under Grant(No.F2012203182)
文摘A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.
文摘A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.