期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度级联R-FCN的尾灯检测算法研究 被引量:1
1
作者 白博 谢刚 续欣莹 《计算机工程与应用》 CSCD 北大核心 2020年第6期194-200,共7页
前方车辆尾灯检测是自动驾驶中环境感知的研究热点,为在复杂城市环境下实时检测车辆尾灯,将基于区域的全卷积网络(Region-based Fully Convolutional Networks,R-FCN)引入尾灯检测,提出了一种基于多尺度级联R-FCN的车辆尾灯检测算法。... 前方车辆尾灯检测是自动驾驶中环境感知的研究热点,为在复杂城市环境下实时检测车辆尾灯,将基于区域的全卷积网络(Region-based Fully Convolutional Networks,R-FCN)引入尾灯检测,提出了一种基于多尺度级联R-FCN的车辆尾灯检测算法。通过网络中的跨层连接融合尾灯的底层特征和高层语义,并加入批次归一化层加快网络的收敛速度,得到改进的R-FCN子网络,将一系列在不同交并比输入数据上训练的R-FCN子网络级联得到最终的检测网络。同时预测阶段采用改进的非极大值抑制获得最精准的检测结果。检测结果表明,该方法在CVPR数据集上获得总体94.04%的平均精度,单张图片平均检测耗时31 ms,在检测速度和精度上均有较好的性能。 展开更多
关键词 车辆尾灯检测 基于区域的全卷积网络(R-FCN) 级联网络 多尺度特征融合 批次归一化 非极大值抑制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部