In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas...In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.展开更多
Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applicatio...Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.展开更多
With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and inf...With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.展开更多
Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many s...Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.展开更多
基金supported in part by the National Natural Science Foundation of China under grant No. 61271259, No. 61301123, No. 61471076Scientific and Technological Research Program of Chongqing Municipal Education Commission of Chongqing of China under Grant No.KJ130536
文摘In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.
基金the Iran Telecommunication Research Center (ITRC)
文摘Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.
文摘With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.
文摘Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.