In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD ...In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems.展开更多
Vehicle detectition in still images is a comparatively difficult task. This paper presents a method for this task by using boosted local pattern detector constructed from two local features including Haar-like and ori...Vehicle detectition in still images is a comparatively difficult task. This paper presents a method for this task by using boosted local pattern detector constructed from two local features including Haar-like and oriented gradient features. The whole process is composed of three stages. In the first stage, local appearance features of vehicles and non-vehicle objects are extracted. Haar-tike and oriented gradient features are extracted separately in this stage as local features. In the second stage, Adabeost algorithm is used to select the most discriminative features as weak detectors from the two local feature sets, and a strong local pattern detector is built by the weighted combination of these selected weak detectors. Finally, vehicle detection can be performed in still images by using the boosted strong local feature detector. Experiment results show that the local pattern detector constructed in this way combines the advantages of Haar-like and oriented gradient features, and can achieve better detection results than the detector by using single Haar-like features.展开更多
基金Supported by the Scientific Research Foundation for the Imported Talents(YKJ201014)~~
文摘In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems.
基金supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD),the MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))
文摘Vehicle detectition in still images is a comparatively difficult task. This paper presents a method for this task by using boosted local pattern detector constructed from two local features including Haar-like and oriented gradient features. The whole process is composed of three stages. In the first stage, local appearance features of vehicles and non-vehicle objects are extracted. Haar-tike and oriented gradient features are extracted separately in this stage as local features. In the second stage, Adabeost algorithm is used to select the most discriminative features as weak detectors from the two local feature sets, and a strong local pattern detector is built by the weighted combination of these selected weak detectors. Finally, vehicle detection can be performed in still images by using the boosted strong local feature detector. Experiment results show that the local pattern detector constructed in this way combines the advantages of Haar-like and oriented gradient features, and can achieve better detection results than the detector by using single Haar-like features.