随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detecti...随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detection method based on VANETs)。在该方法中,车辆自动聚簇,然后主动向簇头汇报当前自身的位置和速度信息;簇头根据收到的信息计算簇内的车辆密度和路面上的加权平均速度,之后基于模糊逻辑判断簇内的交通态势。仿真结果表明,在四种车辆场景下,TraSD-VANET检测准确程度比协作检测方法 CoTEC(cooperative traffic congestion detection)平均高16%。该方法在道路交通态势检测中有重要的应用价值。展开更多
文摘随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detection method based on VANETs)。在该方法中,车辆自动聚簇,然后主动向簇头汇报当前自身的位置和速度信息;簇头根据收到的信息计算簇内的车辆密度和路面上的加权平均速度,之后基于模糊逻辑判断簇内的交通态势。仿真结果表明,在四种车辆场景下,TraSD-VANET检测准确程度比协作检测方法 CoTEC(cooperative traffic congestion detection)平均高16%。该方法在道路交通态势检测中有重要的应用价值。