The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the tr...The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
文摘The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.