Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, com...A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.展开更多
As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and...As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and threatened human health. Humanity produce and consume various goods and services in order to meet current requirements as well as pollute the environment required for maintaining life and source for these activities. Environmental taxes are adopted as one of the precautions for avoiding pollution of necessary components to sustain human life. This study aims to determine the sensitivities of 597 tax payers to environmental taxes, who contribute to environmental direct or indirect regulations with income, motor vehicle, special consumption, and sanitation taxes. The findings of the questionnaire suggest that corresponding taxpayers in Erzurum are sensitive to environmental taxes and that they tend to adopt any environmental tax being performed while this tax is intended to protect the environment.展开更多
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat...Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.展开更多
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel ada...In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.展开更多
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
文摘A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.
文摘As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and threatened human health. Humanity produce and consume various goods and services in order to meet current requirements as well as pollute the environment required for maintaining life and source for these activities. Environmental taxes are adopted as one of the precautions for avoiding pollution of necessary components to sustain human life. This study aims to determine the sensitivities of 597 tax payers to environmental taxes, who contribute to environmental direct or indirect regulations with income, motor vehicle, special consumption, and sanitation taxes. The findings of the questionnaire suggest that corresponding taxpayers in Erzurum are sensitive to environmental taxes and that they tend to adopt any environmental tax being performed while this tax is intended to protect the environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.51375212,61403172&51305167)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Key Research and Development Program of Jiangsu Province(Grant No.BE2016149)
文摘Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.
基金supported by the National Natural Science Foundation of China(Grant Nos.61304193&U1564208)National Key R&D Program of China(Grant No.2016YFB0100900)
文摘In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.