-
题名智能网联环境下单交叉口车辆轨迹优化
被引量:1
- 1
-
-
作者
冯红艳
康雷雷
刘澜
-
机构
西南交通大学
综合交通运输智能化国家地方联合工程实验室
-
出处
《交通运输工程与信息学报》
2024年第1期25-38,共14页
-
基金
成都市重点研发支撑计划技术创新研发项目(2022-YF05-00302-SN)
国家自然科学基金项目(61873216)。
-
文摘
为了提高信号灯前车辆的通行效率,改善交通流整体运行水平,本文从减少车辆延误和降低燃油消耗两个角度入手,在智能网联环境下,提出了一种车辆编组识别算法和针对编组头车的多目标线性轨迹优化模型(MOLP-pl)。首先对智能驾驶员跟驰模型(IDM)进行改进,调整车辆状态,减少车辆随机到达状态下车辆速度和车头时距分布的差异,同时为后续MOLP-pl轨迹优化模型的运行提供先决条件。在此基础上,以车辆编组为优化单元,通过车辆编组识别算法识别编组头车和跟随车辆,将编组头车的行驶轨迹作为优化对象并建立相应的数学模型。为了提高车辆轨迹优化模型的求解效率和精度,对其进行线性化重构,采用线性求解器计算编组头车加速度,构建编组头车最佳时空轨迹,然后,利用IDM跟驰模型计算跟随车辆的行驶速度,从而使编组车辆最大效率的通过交叉口。最后,利用SUMO构建的仿真实验表明:本研究提出的车辆轨迹优化算法可显著提高信号灯前车辆的通行效率,在三种不同的交通饱和度条件下,相对于无速度引导场景,车辆延误分别降低了8.56%、12.42%、64.79%,燃油消耗分别降低了17.21%、18.34%、12.64%;相对于逻辑控制场景,延误分别降低了-1.31%、2.63%、60.83%,燃油消耗分别降低了2.47%、7.91%、2.28%。
-
关键词
智能交通
车辆轨迹优化
交通效率与能耗
编组识别
SUMO
-
Keywords
intelligent transportation
vehicle trajectory optimization
traffic efficiency and consumption
platoon identification
Simulation of Urban MObility
-
分类号
U491
[交通运输工程—交通运输规划与管理]
-
-
题名多车道交叉口交通信号与混合车辆轨迹协同优化框架
- 2
-
-
作者
王立夫
刘一铄
孔芝
郭戈
-
机构
东北大学秦皇岛分校控制工程学院
-
出处
《控制与决策》
EI
CSCD
北大核心
2024年第11期3567-3576,共10页
-
基金
国家自然科学基金项目(61573077,U1808205)
河北省自然科学基金项目(F2022501005)
国家留学基金项目(202308130119)。
-
文摘
智能网联自动驾驶技术逐渐成熟,为交叉口日益严重的交通拥堵和能源浪费问题提供了新的解决方案.将交通信号控制与车辆轨迹优化相结合,可以有效提高通行效率和燃油效率.因此,针对混合交通流环境下的多车道交叉口,提出一种交通信号与车辆轨迹协同优化控制框架.首先,考虑到信号相序的动态变化和车辆变道的原因及其持续性影响,对车辆的纵向跟驰模型和横向变道模型进行改进;其次,以最小化车辆通行延迟和油耗为目标,提出交通信号与车辆轨迹协同优化控制方法,在交通信号的自适应控制下平滑车辆轨迹;此外,设计一种协同优化控制算法,以较低的计算量保证优化效率;最后,在不同的交通情境下进行数值仿真,结果表明所提出框架能够同时提高通行效率和燃油效率.相比交通信号或车辆轨迹的单独优化框架,所提出协同优化框架在通行延迟、油耗、安全性能和驾驶舒适度等方面均能产生更多的增益.
-
关键词
混合交通流
多车道交叉口
车辆轨迹优化
交通信号优化
油耗
通行延迟
-
Keywords
mixed traffic flow
multi-lane intersection
vehicle trajectory optimization
traffic signal optimization
fuel consumption
travel delay
-
分类号
TP273
[自动化与计算机技术—检测技术与自动化装置]
-