A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD....A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.展开更多
As a newly proposed two terminals mechanical element, inerter has been successfully applied in vehicle suspension system to improve its vertical vibration isolation performance. The novelty of this paper is to explore...As a newly proposed two terminals mechanical element, inerter has been successfully applied in vehicle suspension system to improve its vertical vibration isolation performance. The novelty of this paper is to explore the advantages of lateral stability of vehicle suspension by the use of inerter element. A full car model considering the steering condition is built, and the standard fishhook steering input is chosen to test the lateral stability of the suspension system. By considering the ride comfort performance and the rollover resistance performance, three basic suspension layouts incorporating inerter element are optimized by means of genetic algorithm. Constraints of the suspension working space and road holding ability are also taken into account during the optimization. Two steering input condition, namely the sine-steer input and the fishhook steer input are performed to evaluate the vehicle suspension performance. Results show that, the ride comfort and the lateral stability of the vehicle suspension system can be synchronously improved by including the inerter element.展开更多
基金Project(20100481323) supported by China Postdoctoral Science FoundationProjects(61201133,61172055,61072067,51278058)supported by the National Natural Science Foundation of China+4 种基金Project(NCET-11-0691) supported by the Program for New Century Excellent Talents in UniversityProject(11105) supported by the Foundation of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing,ChinaProject(B08038) supported by the "111" Project,ChinaProject(K5051301011) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(CX12178(6)) supported by the Xian Municipal Technology Transfer Promotion funds,China
文摘A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.
基金supported by the National Natural Science Foundation of China(Grant No.51705209)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160533)+1 种基金Scientific Research Innovation Projects of Jiangsu Province(Grant No.KYLX15_1081)Yujie Shen is also supported by the China Scholarship Council
文摘As a newly proposed two terminals mechanical element, inerter has been successfully applied in vehicle suspension system to improve its vertical vibration isolation performance. The novelty of this paper is to explore the advantages of lateral stability of vehicle suspension by the use of inerter element. A full car model considering the steering condition is built, and the standard fishhook steering input is chosen to test the lateral stability of the suspension system. By considering the ride comfort performance and the rollover resistance performance, three basic suspension layouts incorporating inerter element are optimized by means of genetic algorithm. Constraints of the suspension working space and road holding ability are also taken into account during the optimization. Two steering input condition, namely the sine-steer input and the fishhook steer input are performed to evaluate the vehicle suspension performance. Results show that, the ride comfort and the lateral stability of the vehicle suspension system can be synchronously improved by including the inerter element.