A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the bas...A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.展开更多
The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle...The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle's charging electricity were studied from the numerical perspective. The numerical results show that the electric vehicle's charging electricity will destroy the stability of uniform flow and produce some prominent queues and these traffic phenomena are directly related to the initial headway, the distance between two adjacent charging stations and the number of charging stations. The above results can help traffic engineer to choose the position of charging station and the electric vehicle's driver to adjust his/her driving behavior in the traffic system with charging station.展开更多
In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding co...In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.展开更多
基金The National Key Technology R&D Program of China during the 10th Five-Year Plan Period(No.2005BA41B11)the National Natural Science Foundation of China(No.50578003)
文摘A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.
基金Project(71271016)supported the National Natural Science Foundation of China
文摘The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle's charging electricity were studied from the numerical perspective. The numerical results show that the electric vehicle's charging electricity will destroy the stability of uniform flow and produce some prominent queues and these traffic phenomena are directly related to the initial headway, the distance between two adjacent charging stations and the number of charging stations. The above results can help traffic engineer to choose the position of charging station and the electric vehicle's driver to adjust his/her driving behavior in the traffic system with charging station.
文摘In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.