In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron ...In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.展开更多
The development and experiment of a computer-controlled truck dispatching system in Surface mine is presented in this paper.It includes the system overall design, the system working mode design, the selection of the b...The development and experiment of a computer-controlled truck dispatching system in Surface mine is presented in this paper.It includes the system overall design, the system working mode design, the selection of the best truck travel path, the development of truck fleet programming, the development of database management system, and the development of truck real time dispatching, etc. The successful experiment is carried out in Huolinhe surface mine, and the satisfied results are obtained. Application of this system can improve the system production and the mine management. This system is the first one in our country at present.展开更多
Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) whi...Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.展开更多
An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed l...An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.展开更多
基金Project(70671108) supported by the National Natural Science Foundation of China
文摘In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.
文摘The development and experiment of a computer-controlled truck dispatching system in Surface mine is presented in this paper.It includes the system overall design, the system working mode design, the selection of the best truck travel path, the development of truck fleet programming, the development of database management system, and the development of truck real time dispatching, etc. The successful experiment is carried out in Huolinhe surface mine, and the satisfied results are obtained. Application of this system can improve the system production and the mine management. This system is the first one in our country at present.
基金supported by the 973 Program under Grant No.2011CB302506, 2012CB315802National Key Technology Research and Development Program of China under Grant No.2012BAH94F02+5 种基金The 863 Program under Grant No.2013AA102301NNSF of China under Grant No.61132001, 61170273Program for New Century Excel-lent Talents in University under Grant No. NCET-11-0592Project of New Generation Broad band Wireless Network under Grant No.2014ZX03006003The Technology Development and Experiment of Innovative Network Architecture(CNGI-12-03-007)The Open Fund Project of CAAC InformationTechnology Research Base(CAACITRB-201201)
文摘Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.
基金Project supported by the National Natural Science Foundation of China(No.61403163)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ14G010008 and LY15F030021)
文摘An important production planning problem is how to best schedule jobs(or lots)when each job consists of a large number of identical parts.This problem is often approached by breaking each job/lot into sublots(termed lot streaming).When the total number of transfer sublots in lot streaming is large,the computational effort to calculate job completion time can be significant.However,researchers have largely neglected this computation time issue.To provide a practical method for production scheduling for this situation,we propose a method to address the n-job,m-machine,and lot streaming flow-shop scheduling problem.We consider the variable sublot sizes,setup time,and the possibility that transfer sublot sizes may be bounded because of capacity constrained transportation activities.The proposed method has three stages:initial lot splitting,job sequencing optimization with efficient calculation of the makespan/total flow time criterion,and transfer adjustment.Computational experiments are conducted to confirm the effectiveness of the three-stage method.The experiments reveal that relative to results reported on lot streaming problems for five standard datasets,the proposed method saves substantial computation time and provides better solutions,especially for large-size problems.