Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity ...Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity at different states were systematically investigated. The as-cast microstructure consists of three phases: Cu matrix, Cr and Cu5 Zr. Zr is completely dissolved into the matrix while partial Cr remains after the solid solution treatment. Aging of the cold-rolled sample makes nanocrystals of Cr and Cu5 Zr precipitate from the matrix, and the microhardness and electrical conductivity rise. A combination of high microhardness(HV 186) and high conductivity(81% IACS) can be obtained by aging the sample at 773 K for 60 min. As the aging temperature increases, the orientation degree of the Cu crystals gradually decreases to zero, but the microstrain in them cannot be eliminated completely owing to the presence of precipitates and dislocations. The Cr precipitates exhibit the N-W orientation relationship with the matrix when the coherence strengthening mechanism plays a main role.展开更多
The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dy...The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility.展开更多
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy...Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro...An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.展开更多
The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron mic...The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron microscope,optical microscope,intergranular corrosion experiment,and electrochemical experiment were used.Throughout different stages of aging treatment,the corrosion behavior of both CR and RTR samples exhibited a sequential progression of pitting corrosion,followed by intergranular corrosion,and then pitting corrosion again.The corrosion rates of both samples initially showed an increase,followed by a gradual stabilization over time.The size and density of T1 phase significantly influenced the corrosion performance of the alloy.During the peak aging and over-aging stages,the CR sample exhibited superior corrosion resistance to the RTR sample,attributed to its finer T1 phase.展开更多
基金Project(51227001)supported by the National Natural Science Foundation of ChinaProject(2011CB610405)supported by the National Basic Research Program of China
文摘Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity at different states were systematically investigated. The as-cast microstructure consists of three phases: Cu matrix, Cr and Cu5 Zr. Zr is completely dissolved into the matrix while partial Cr remains after the solid solution treatment. Aging of the cold-rolled sample makes nanocrystals of Cr and Cu5 Zr precipitate from the matrix, and the microhardness and electrical conductivity rise. A combination of high microhardness(HV 186) and high conductivity(81% IACS) can be obtained by aging the sample at 773 K for 60 min. As the aging temperature increases, the orientation degree of the Cu crystals gradually decreases to zero, but the microstrain in them cannot be eliminated completely owing to the presence of precipitates and dislocations. The Cr precipitates exhibit the N-W orientation relationship with the matrix when the coherence strengthening mechanism plays a main role.
基金Project(2019YFB2006500) supported by the National Key Research and Development Program,ChinaProject(51674303) supported by the National Natural Science Foundation of China+3 种基金Project(2020GK2032) supported by Hunan High-tech Industry Science and Technology Innovation Leading Plan,ChinaProject (2018RS3015) supported by the Huxiang High-level Talent Gathering Project of Hunan Province,ChinaProject(2017YFA0700700) supported by the Ministry of Science&Technology of ChinaProject(2019CX006) supported by Innovation Driven Program of Central South University,China。
文摘The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility.
基金Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products,China。
文摘Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金Project(2019YFB2006500)supported by the National Key Research and Development Program of ChinaProject(51674303)supported by the National Natural Science Foundation of China+2 种基金Project(2018RS3015)supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,ChinaProject(2019CX006)supported by the Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China。
文摘An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.
基金supported by the High-tech Industry Technology Innovation Leading Plan of Hunan Province,China(No.2022GK4032)the State Key Laboratory of Precision Manufacturing for Extreme Service Performance at Central South University,China.
文摘The impact of cryorolling(CR)and room temperature rolling(RTR)followed by artificial aging on the corrosion characteristics of 2195 Al−Li alloy(AA2195)was studied.Transmission electron microscope,scanning electron microscope,optical microscope,intergranular corrosion experiment,and electrochemical experiment were used.Throughout different stages of aging treatment,the corrosion behavior of both CR and RTR samples exhibited a sequential progression of pitting corrosion,followed by intergranular corrosion,and then pitting corrosion again.The corrosion rates of both samples initially showed an increase,followed by a gradual stabilization over time.The size and density of T1 phase significantly influenced the corrosion performance of the alloy.During the peak aging and over-aging stages,the CR sample exhibited superior corrosion resistance to the RTR sample,attributed to its finer T1 phase.