The hot rolling experiment of AZ31 magnesium alloy was carried out by laying anoverlay mold at the initial temperature of 400℃.According to the Mizushima automatic plan view pattern control system(MAS)rolling theory ...The hot rolling experiment of AZ31 magnesium alloy was carried out by laying anoverlay mold at the initial temperature of 400℃.According to the Mizushima automatic plan view pattern control system(MAS)rolling theory and the cross rolling process,different reductions in the middle and edges of the magnesium alloy were realized,and the influence of the regional controlled reduction rolling on the edge cracks and microstructure gradient of the magnesium alloy were analyzed.It is shown that this rolling approach has reduced the maximum edge crack depth of the rolled piece by 56.85%,and there is a weakening tendency in the base surface texture of the strip edge,the base surface texture density drops from 23.97 to 17.48 after ordinary flat rolling.It exhibits basal texture gradients from the edge to the middle of the sheet along the RD direction,which reflected the uneven deformation of the sheets.It is suitable for the processing of metal molds that require large edge reductions such as mobile phone shells,and provided a theoretical basis for the variable thickness rolling of the magnesium alloy strip.展开更多
An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure ...An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure according to hexagonal close packed structure)and long-period stacking(LPS)phase.Tensile tests of Mg97Zn1Y2 alloy in comparison with pure Mg were conducted.The fracture morphologies of the tensile specimens were characterized and the microstructures near fracture surface were observed.The results show that the rolled Mg97Zn1Y2 alloy shows a mixed fracture mode including dimples indicating a ductile fracture pattern and a small fraction of cleavage planes indicating a brittle fracture pattern,which is different from the single brittle fracture of the as-cast alloy.In addition,the plastic deformation is mainly from dislocations induced strain with small strengthening effect during plastic deformation in the as-cast Mg97Zn1Y2 alloy,and the strain hardening rate is similar to that of the as-cast pure magnesium.The deformation mechanism of Mg97Zn1Y2 alloy is different from that of the pure magnesium according to a metallographical observation that whether twins are found or not.The strengthening effect hardly exists in the rolled Mg97Zn1Y2 alloy under the same dislocations induced strain,which is different from that of the as-cast alloy with moderate strengthening effect.展开更多
This paper presents some investigations on the effect of processing parameters on the emission of electromagnetic radiation (EMR) during plastic deformation and crack propagation in copper-zinc alloys. Timing of the...This paper presents some investigations on the effect of processing parameters on the emission of electromagnetic radiation (EMR) during plastic deformation and crack propagation in copper-zinc alloys. Timing of the EMR emissions, maximum stress during crack instability, stress-intensity factor, elastic strain energy release rate, maximum EMR amplitude, RMS value of EMR amplitude, EMR frequency and electromagnetic energy release rate were analysed for the effect of rolling directions at different percentage of zinc content in Cu-Zn alloy specimens. The same parameters were also analysed for 68-32 Cu-Zn alloy specimens at different annealing temperatures and at different angles 0, to the rolling direction. EMR emissions are observed to be highly anisotropic in nature. At θ=45° to 60°, marked changes in mechanical and electromagnetic parameters were observed. Specimens annealed at 500℃, just above the recrystallization temperature, and at 700℃, when grain-size growth is rapid, EMR responses have been found to have well-defined patterns.展开更多
基金Project(52005358)supported by the National Natural Science Foundation of ChinaProjects(201901D111243,201901D111241)supported by the Natural Science Foundation of Shanxi Province,ChinaProject(2019-KF-25-05)supported by the Natural Science Foundation of Liaoning Province,China。
文摘The hot rolling experiment of AZ31 magnesium alloy was carried out by laying anoverlay mold at the initial temperature of 400℃.According to the Mizushima automatic plan view pattern control system(MAS)rolling theory and the cross rolling process,different reductions in the middle and edges of the magnesium alloy were realized,and the influence of the regional controlled reduction rolling on the edge cracks and microstructure gradient of the magnesium alloy were analyzed.It is shown that this rolling approach has reduced the maximum edge crack depth of the rolled piece by 56.85%,and there is a weakening tendency in the base surface texture of the strip edge,the base surface texture density drops from 23.97 to 17.48 after ordinary flat rolling.It exhibits basal texture gradients from the edge to the middle of the sheet along the RD direction,which reflected the uneven deformation of the sheets.It is suitable for the processing of metal molds that require large edge reductions such as mobile phone shells,and provided a theoretical basis for the variable thickness rolling of the magnesium alloy strip.
基金Project(2009AA03Z114)supported by the National High-tech Research and Development Program of China
文摘An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure according to hexagonal close packed structure)and long-period stacking(LPS)phase.Tensile tests of Mg97Zn1Y2 alloy in comparison with pure Mg were conducted.The fracture morphologies of the tensile specimens were characterized and the microstructures near fracture surface were observed.The results show that the rolled Mg97Zn1Y2 alloy shows a mixed fracture mode including dimples indicating a ductile fracture pattern and a small fraction of cleavage planes indicating a brittle fracture pattern,which is different from the single brittle fracture of the as-cast alloy.In addition,the plastic deformation is mainly from dislocations induced strain with small strengthening effect during plastic deformation in the as-cast Mg97Zn1Y2 alloy,and the strain hardening rate is similar to that of the as-cast pure magnesium.The deformation mechanism of Mg97Zn1Y2 alloy is different from that of the pure magnesium according to a metallographical observation that whether twins are found or not.The strengthening effect hardly exists in the rolled Mg97Zn1Y2 alloy under the same dislocations induced strain,which is different from that of the as-cast alloy with moderate strengthening effect.
基金Project supported by Department of Science and Technology, India
文摘This paper presents some investigations on the effect of processing parameters on the emission of electromagnetic radiation (EMR) during plastic deformation and crack propagation in copper-zinc alloys. Timing of the EMR emissions, maximum stress during crack instability, stress-intensity factor, elastic strain energy release rate, maximum EMR amplitude, RMS value of EMR amplitude, EMR frequency and electromagnetic energy release rate were analysed for the effect of rolling directions at different percentage of zinc content in Cu-Zn alloy specimens. The same parameters were also analysed for 68-32 Cu-Zn alloy specimens at different annealing temperatures and at different angles 0, to the rolling direction. EMR emissions are observed to be highly anisotropic in nature. At θ=45° to 60°, marked changes in mechanical and electromagnetic parameters were observed. Specimens annealed at 500℃, just above the recrystallization temperature, and at 700℃, when grain-size growth is rapid, EMR responses have been found to have well-defined patterns.