Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga...The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.展开更多
Twin roll cast ZK60 alloy strip/sheet with final thickness of 0.5 mm was prepared, and effect of rolling temperature on microstructure and texture development was investigated using OM and XRD technique, microstructur...Twin roll cast ZK60 alloy strip/sheet with final thickness of 0.5 mm was prepared, and effect of rolling temperature on microstructure and texture development was investigated using OM and XRD technique, microstructure and texture were measured on specimens subjected to rolling experiment at different rolling temperature, and macrotexture was also evaluated by X-ray diffraction method. In addition, the (1010)and (0002) pole figures were measured, and the tensile test was performed to reveal the influence of rolling temperature on mechanical properties. The results show that the microstrucmre of ZK60 alloy sheet consisted of fibrous structure with elongated grains, and shear bands along the rolling direction after warm rolling. Dynamic recrystallization could be found during the warm rolling process at rolling temperature 350℃ and above. And many fine recrystallized grain could be observed in the shear bands area. It is a little difficult to see the recrystallized grain in the sheet warm rolled at 300℃ because of higher density of shear bands. The warm rolled ZK60 alloy sheet exhibited strong (0002) pole texture, the intensity of (0002) pole figure decreases with the increasing of rolling temperature and the basal pole tilted slightly to the transverse direction after warm rolling.展开更多
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
文摘The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.
基金Project(35060905) supported by the Doctoral Foundation of Jiangsu University of Science and Technology
文摘Twin roll cast ZK60 alloy strip/sheet with final thickness of 0.5 mm was prepared, and effect of rolling temperature on microstructure and texture development was investigated using OM and XRD technique, microstructure and texture were measured on specimens subjected to rolling experiment at different rolling temperature, and macrotexture was also evaluated by X-ray diffraction method. In addition, the (1010)and (0002) pole figures were measured, and the tensile test was performed to reveal the influence of rolling temperature on mechanical properties. The results show that the microstrucmre of ZK60 alloy sheet consisted of fibrous structure with elongated grains, and shear bands along the rolling direction after warm rolling. Dynamic recrystallization could be found during the warm rolling process at rolling temperature 350℃ and above. And many fine recrystallized grain could be observed in the shear bands area. It is a little difficult to see the recrystallized grain in the sheet warm rolled at 300℃ because of higher density of shear bands. The warm rolled ZK60 alloy sheet exhibited strong (0002) pole texture, the intensity of (0002) pole figure decreases with the increasing of rolling temperature and the basal pole tilted slightly to the transverse direction after warm rolling.