The fishtail in head and tail of the slabs was studied during V-H hot rolling process. With the application of ANSYS/LS-DYNA, simulation analysis was used to research this process. The various factors which have a gre...The fishtail in head and tail of the slabs was studied during V-H hot rolling process. With the application of ANSYS/LS-DYNA, simulation analysis was used to research this process. The various factors which have a great influence on fishtail shapes were analysed, such as initial width, initial thickness, radius of the edger roll and horizontal roll, edging draught,horizontal reduction rate, and friction coefficient of the surface. Then the curves that can describe the shapes were obtained. After a certain time of self-learning, the optimized curves were given out. At last, through the fitting of the simulation test results, the math models for the area of fishtail defect changing with the presented factors were received. The experimental results show that the accuracy of the prediction for the fishtail shapes is more than 95%. With the application of the prediction for the fishtail shapes and the area of the fishtail defect, the loss rate of the slab is decreased by about 0.1%.展开更多
基金Project(N100307002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(61174115)supported by the National Natural Science Foundation of China
文摘The fishtail in head and tail of the slabs was studied during V-H hot rolling process. With the application of ANSYS/LS-DYNA, simulation analysis was used to research this process. The various factors which have a great influence on fishtail shapes were analysed, such as initial width, initial thickness, radius of the edger roll and horizontal roll, edging draught,horizontal reduction rate, and friction coefficient of the surface. Then the curves that can describe the shapes were obtained. After a certain time of self-learning, the optimized curves were given out. At last, through the fitting of the simulation test results, the math models for the area of fishtail defect changing with the presented factors were received. The experimental results show that the accuracy of the prediction for the fishtail shapes is more than 95%. With the application of the prediction for the fishtail shapes and the area of the fishtail defect, the loss rate of the slab is decreased by about 0.1%.