Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
To expand mission capabilities needed without a proportional increase in cost or risk for exploration of the solar system,the multiple objective trajectory using low-thrust propulsion and gravity-assist technique is c...To expand mission capabilities needed without a proportional increase in cost or risk for exploration of the solar system,the multiple objective trajectory using low-thrust propulsion and gravity-assist technique is considered.However,low-thrust,gravity-assist trajectories pose significant optimization challenges because of their large design space.Here,the planets are selected as primal scientific mission goals,while the asteroids are selected as secondary scientific mission goals,and a global trajectory optimization problem is introduced and formulated.This multi-objective decision making process is transformed into a bi-level programming problem,where the targets like planets with small subsamples but high weight are optimized in up level,and targets like asteroids with large subsamples but low weight are optimized in down level.Then,the selected solutions for bi-level programming are optimized thanks to a cooperative Differential Evolution(DE) algorithm that is developed from the original DE algorithm;in addition,an sequential quadratic programming(SQP) method is used in low-thrust optimization.This solution approach is successfully applied to the simulation case of the multi-objective trajectory design problem.The results obtained are presented and discussed.展开更多
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金supported by the Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory of China (Grant No. 2012afdl005)
文摘To expand mission capabilities needed without a proportional increase in cost or risk for exploration of the solar system,the multiple objective trajectory using low-thrust propulsion and gravity-assist technique is considered.However,low-thrust,gravity-assist trajectories pose significant optimization challenges because of their large design space.Here,the planets are selected as primal scientific mission goals,while the asteroids are selected as secondary scientific mission goals,and a global trajectory optimization problem is introduced and formulated.This multi-objective decision making process is transformed into a bi-level programming problem,where the targets like planets with small subsamples but high weight are optimized in up level,and targets like asteroids with large subsamples but low weight are optimized in down level.Then,the selected solutions for bi-level programming are optimized thanks to a cooperative Differential Evolution(DE) algorithm that is developed from the original DE algorithm;in addition,an sequential quadratic programming(SQP) method is used in low-thrust optimization.This solution approach is successfully applied to the simulation case of the multi-objective trajectory design problem.The results obtained are presented and discussed.