A new spiral tool path generation algorithm for 5-axis high speed machining is proposed in this paper.Firstly,the voltage contours are calculated to satisfy the machining parameters in the mapping parametric domain by...A new spiral tool path generation algorithm for 5-axis high speed machining is proposed in this paper.Firstly,the voltage contours are calculated to satisfy the machining parameters in the mapping parametric domain by means of the electrostatic field model of partial differential equations.Secondly,the mapping rules are constructed and the machining trajectory is planned out in the standard parametric domain in order to map and generate the spiral trajectory in the corresponding parametric domain.Finally,this trajectory is mapped onto the parametric surface for the obtainment of the spiral tool path.This spiral tool path can realize the machining of complicated parametric surface and trimmed surface without tool retractions.The above-mentioned algorithm has been implemented in several simulations and validated successfully through the actual machining of a complicated cavity.The results indicate that this method is superior to the existing machining methods to realize the high speed machining of the complicate-shaped cavity based on parametric surface and trimmed surface.展开更多
A novel approach of iso-scallop trajectory generation for smooth manifold surfaces has been developed. Firstly,by defining homeomorphism mapping relations and differentiable structures,the smooth manifold surface is m...A novel approach of iso-scallop trajectory generation for smooth manifold surfaces has been developed. Firstly,by defining homeomorphism mapping relations and differentiable structures,the smooth manifold surface is mapped into several Euclidean planes,thus its trajectory generation can be decomposed into planar curve-filling tasks. Secondly,in the generation of direction-parallel trajectories,the calculation of the cutting interval and the curvature is given,depending on the generation of the first curve in the projection view. Thirdly,after automatic adherences of inverse projection curves,the filled curves are mapped into the original surface inversely to form trajectories. Although the required trajectories are iso-scallop,the trajectory intervals are variable according to the curvature changes at the projection point,which is advantageous to improving the trajectory quality. The proposed approach has appealing merits of dimensionality reduction,which decreases the algorithm complexity. Finally,numerical and machining examples are given to illustrate its feasibility and validity.展开更多
基金supported by the National Program on Key Basic Research Project of China (973 Program) under Grant No.2011CB302400the National Natural Science Foundation of China (NSFC) under Grant Nos.50975274 and 51175479
文摘A new spiral tool path generation algorithm for 5-axis high speed machining is proposed in this paper.Firstly,the voltage contours are calculated to satisfy the machining parameters in the mapping parametric domain by means of the electrostatic field model of partial differential equations.Secondly,the mapping rules are constructed and the machining trajectory is planned out in the standard parametric domain in order to map and generate the spiral trajectory in the corresponding parametric domain.Finally,this trajectory is mapped onto the parametric surface for the obtainment of the spiral tool path.This spiral tool path can realize the machining of complicated parametric surface and trimmed surface without tool retractions.The above-mentioned algorithm has been implemented in several simulations and validated successfully through the actual machining of a complicated cavity.The results indicate that this method is superior to the existing machining methods to realize the high speed machining of the complicate-shaped cavity based on parametric surface and trimmed surface.
基金supported by the National Natural Science Foundation of China (Grant Nos.50835004,50905131)the Natural Science Foundation of Hubei Province (Grant No.2009CDB251)
文摘A novel approach of iso-scallop trajectory generation for smooth manifold surfaces has been developed. Firstly,by defining homeomorphism mapping relations and differentiable structures,the smooth manifold surface is mapped into several Euclidean planes,thus its trajectory generation can be decomposed into planar curve-filling tasks. Secondly,in the generation of direction-parallel trajectories,the calculation of the cutting interval and the curvature is given,depending on the generation of the first curve in the projection view. Thirdly,after automatic adherences of inverse projection curves,the filled curves are mapped into the original surface inversely to form trajectories. Although the required trajectories are iso-scallop,the trajectory intervals are variable according to the curvature changes at the projection point,which is advantageous to improving the trajectory quality. The proposed approach has appealing merits of dimensionality reduction,which decreases the algorithm complexity. Finally,numerical and machining examples are given to illustrate its feasibility and validity.