期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络的轨道交通客流量预测 被引量:7
1
作者 常利 左忠义 韩冰 《大连交通大学学报》 CAS 2014年第A01期13-16,共4页
通过对BP神经网络的研究,借助MATLAB软件及其神经网络工具箱的应用学习,对非线性函数进行逼近,通过特定设计函数对所需要建立的神经网络模型进行训练,并且利用仿真来判断误差结果,得出符合模型的合理权值以及阈值,最后根据已有年数据进... 通过对BP神经网络的研究,借助MATLAB软件及其神经网络工具箱的应用学习,对非线性函数进行逼近,通过特定设计函数对所需要建立的神经网络模型进行训练,并且利用仿真来判断误差结果,得出符合模型的合理权值以及阈值,最后根据已有年数据进行轨道交通客流量的预测. 展开更多
关键词 BP神经网 MATLAB 轨道交通客流预测
下载PDF
Combination forecast for urban rail transit passenger flow based on fuzzy information granulation and CPSO-LS-SVM 被引量:3
2
作者 TANG Min-an ZHANG Kai LIU Xing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期32-41,共10页
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu... In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future. 展开更多
关键词 urban rail transit passenger flow forecast least squares support vector machine(LS-SVM) fuzzy information granulation chaos particle swarm optimization(CPSO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部