Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass f...Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass fraction) NaC1 solution, respectively, and relevant invading mechanisms were discussed. Results indicate that under full immerging condition, the invading track of chloride ions in cement mortar is similar to beeline that is vertical to chloride ion invading direction, and chloride ion content decreases rapidly with the increase of chloride ion invading depth. Under partial soaking condition, the invading track of chloride ion in cement mortar is similar to the shape of concave parabola, and chloride ion content decreases slowly along the lengthway direction of cement mortar samples in the distance of 20-80 mm from the bottom. Lots of chloride ions accumulate in cement mortar surface layer under the effect of capillary rise and evaporation and then invade cement mortar by diffusion effect. Under partial soaking condition, cement mortar is distinguished by four areas, i.e., immerging area, wet area, crystallization area and dry area.展开更多
The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on ...The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.展开更多
Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent de...Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent devices)[1,2].展开更多
The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed...The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.展开更多
To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and...To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and supercapacitor cathode, have attracted much attention due to the abundant resources and low cost of sodium source. SICs bridge the gap between the batteries and the supercapacitors,which can be used as competitive candidates for large-scale energy storage. In this review, the battery-type anode materials and the capacitor-type cathode materials are classified and introduced in detail. The advantages of various electrolytes including organic electrolytes, aqueous electrolytes and ion liquid electrolytes are also discussed sequentially. In addition, from the perspective of practical value, the presentations of the SICs at the current situation and the potential application in urban rail are displayed. Finally, the challenge,future research and prospects towards the SICs are put forward.展开更多
Photofunctional materials with room-temperature phosphorescence(RTP)commonly appeared in expensive metal-coordination complexes and rare-earth-based compounds.Recently,the metal-free organic RTP materials have been ...Photofunctional materials with room-temperature phosphorescence(RTP)commonly appeared in expensive metal-coordination complexes and rare-earth-based compounds.Recently,the metal-free organic RTP materials have been paid growing attention from scientific community because of the ease of molecular design,low cost as well as potential applications in molecular switches,chemical sensors and biological imaging.To date,efficient RTP materials with high quantum yield are still very limited due to the T_1-S_0 spinforbidden process and weak spin-orbital coupling.Current mechanism based on crystallization-induced or aggregationinduced phosphorescence may serve as an effective way to enhance the RTP[1,2];展开更多
基金Project(50678174) supported by the National Natural Science Foundation of China
文摘Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass fraction) NaC1 solution, respectively, and relevant invading mechanisms were discussed. Results indicate that under full immerging condition, the invading track of chloride ions in cement mortar is similar to beeline that is vertical to chloride ion invading direction, and chloride ion content decreases rapidly with the increase of chloride ion invading depth. Under partial soaking condition, the invading track of chloride ion in cement mortar is similar to the shape of concave parabola, and chloride ion content decreases slowly along the lengthway direction of cement mortar samples in the distance of 20-80 mm from the bottom. Lots of chloride ions accumulate in cement mortar surface layer under the effect of capillary rise and evaporation and then invade cement mortar by diffusion effect. Under partial soaking condition, cement mortar is distinguished by four areas, i.e., immerging area, wet area, crystallization area and dry area.
基金supported by the National Key Basic Research and Development Program of China (2009CB623604)the National Natural Science Foundation of China (50990060, 51073809 and 21161160447)
文摘The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.
基金the National Natural Science Foundation of China (21905137, 21875111, 51573077 and 51861145401)the Natural Science Foundation of Jiangsu Province (BK20180496)the Fundamental Research Funds for the Central Universities (30918011346)。
文摘Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent devices)[1,2].
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872010, 10732020 and 11072008)the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitythe Ph.D. Programs Foundation of Beijing University of Technology (Grant No. 52001015200701)
文摘The multi-pulse orbits and chaotic dynamics of a simply supported laminated composite piezoelectric rectangular plate under combined parametric excitation and transverse excitation are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motion for the laminated composite piezoelectric rectangular plate are derived from von Karman-type equation and third-order shear deformation plate theory of Reddy. The two-degree-of-freedom dimensionless equations of motion are obtained by using the Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plate. The four-dimensional averaged equation in the case of primary parametric resonance and 1:3 internal resonances is obtained by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plate. The analysis of the global dynamics indicates that there exist multi-pulse jumping orbits in the perturbed phase space of the averaged equation. Based on the averaged equation obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plate are also found by numerical simulation. The results obtained above mean the existence of the chaos in the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plate.
基金financially supported by the National Natural Science Foundation of China (51672308, 51972025 and 61888102)
文摘To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors(SICs) consisting of battery anode and supercapacitor cathode, have attracted much attention due to the abundant resources and low cost of sodium source. SICs bridge the gap between the batteries and the supercapacitors,which can be used as competitive candidates for large-scale energy storage. In this review, the battery-type anode materials and the capacitor-type cathode materials are classified and introduced in detail. The advantages of various electrolytes including organic electrolytes, aqueous electrolytes and ion liquid electrolytes are also discussed sequentially. In addition, from the perspective of practical value, the presentations of the SICs at the current situation and the potential application in urban rail are displayed. Finally, the challenge,future research and prospects towards the SICs are put forward.
文摘Photofunctional materials with room-temperature phosphorescence(RTP)commonly appeared in expensive metal-coordination complexes and rare-earth-based compounds.Recently,the metal-free organic RTP materials have been paid growing attention from scientific community because of the ease of molecular design,low cost as well as potential applications in molecular switches,chemical sensors and biological imaging.To date,efficient RTP materials with high quantum yield are still very limited due to the T_1-S_0 spinforbidden process and weak spin-orbital coupling.Current mechanism based on crystallization-induced or aggregationinduced phosphorescence may serve as an effective way to enhance the RTP[1,2];