期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于相对偏心率/轨道倾角矢量的分离模块航天器队形设计方法
1
作者 李兆铭 杨健 尹航 《科学技术与工程》 北大核心 2013年第18期5415-5418,共4页
分离模块航天器是分布式空间系统的一种创新应用。针对分离模块航天器中伴飞模块经典轨道根数设计的问题,本文从运动学角度出发,给出了基于相对偏心率/轨道倾角矢量的分离模块航天器队形设计方法。在已知主模块经典轨道根数的情况下,通... 分离模块航天器是分布式空间系统的一种创新应用。针对分离模块航天器中伴飞模块经典轨道根数设计的问题,本文从运动学角度出发,给出了基于相对偏心率/轨道倾角矢量的分离模块航天器队形设计方法。在已知主模块经典轨道根数的情况下,通过定义的队形参数可以反算出伴飞模块的经典轨道根数,该方法描述简洁,并且具有很高的精度。最后的仿真结果表明了该方法的有效性。 展开更多
关键词 相对偏心率 轨道倾角矢量 分离模块航天器 队形设计
下载PDF
基于ALOS PALSAR数据的卫星轨道拟合方法
2
作者 郑洁 薛东剑 李婉秋 《地理空间信息》 2018年第7期23-27,37,123,共6页
以ALOS PALSAR数据为例,介绍了多项式轨道拟合法和轨道根数描述法两种卫星轨道描述方法。利用这两种方法确定了任意时刻的卫星轨道状态矢量,并结合数学软件Matlab进行计算,比较了两种方法的精度。实验结果表明,多项式轨道拟合法比轨道... 以ALOS PALSAR数据为例,介绍了多项式轨道拟合法和轨道根数描述法两种卫星轨道描述方法。利用这两种方法确定了任意时刻的卫星轨道状态矢量,并结合数学软件Matlab进行计算,比较了两种方法的精度。实验结果表明,多项式轨道拟合法比轨道根数描述法的拟合精度更高,与原始数据的误差更小。卫星轨道拟合的目的在于提高雷达定位精度,对雷达数据校正及其相关研究具有重要意义。 展开更多
关键词 ALOSPALSAR数据 多项式轨道拟合法 轨道根数描述法 卫星轨道状态矢量
下载PDF
雷达数据在地质构造识别中的初步研究 被引量:2
3
作者 姚佛军 杨建民 耿新霞 《矿床地质》 CAS CSCD 北大核心 2010年第S1期695-696,共2页
我们自2009年开始,先后购置了新疆东准噶尔地区、新疆东天山地区、以及西藏班公湖-怒江成矿带西段地区的PALSAR雷达数据,利用PALSAR雷达数据进行构造信息识别的研究。通过信息增强等处理方法技术,提取了构造的相关信息,构造识别效果明显。
关键词 构造识别 雷达数据 东准噶尔地区 新疆东天山 信息识别 方法技术 效果明显 构造信息 信息增强 轨道矢量
下载PDF
晶态C_(60),K_3C_(60),K_6C_(60)的能带计算
4
作者 曹阳 陈良进 +3 位作者 陈波 冯建文 陈文建 莫镰 《化学研究与应用》 CAS CSCD 1995年第3期245-249,共5页
本文用紧束缚法的EHMO三维晶体轨道程序进行计算求得了C_(60),K_3C_(60)和K_6C_(60)的能带结构,并得到了一系列过去未曾见过报导的原子投影态密度、轨道、原子重叠布据、原子电荷、轨道矢量等数据。从这... 本文用紧束缚法的EHMO三维晶体轨道程序进行计算求得了C_(60),K_3C_(60)和K_6C_(60)的能带结构,并得到了一系列过去未曾见过报导的原子投影态密度、轨道、原子重叠布据、原子电荷、轨道矢量等数据。从这些能带图中可以充分说明三种物质的区别,并可解释K_3C_(60)的超导性和C_(60)与K_6C_(60)的绝缘性。 展开更多
关键词 碳原子簇 碳60 能带结构 轨道矢量 紧束缚法
下载PDF
Fast Detection of Chaotic or Regular Behavior of Double Pendulum System: Application of the Fast Norm Vector Indicator Method
5
作者 Dumitru N. Deleanu 《Journal of Physical Science and Application》 2014年第5期291-303,共13页
It is well known that for non-linear Hamiltonian systems there exist ordered regions with quasi-periodic orbits and regions with chaotic orbits. Usually, these regions are distributed in the phase space in very compli... It is well known that for non-linear Hamiltonian systems there exist ordered regions with quasi-periodic orbits and regions with chaotic orbits. Usually, these regions are distributed in the phase space in very complicated ways, which often makes it very difficult to distinguish between them, especially when we are dealing with many degrees of freedom. Recently, a new, very fast and easy to compute indicator of the chaotic or ordered nature of orbits has been introduced by Zotos (2012), the so-called "Fast Norm Vector Indicator (FNV1)". Using the double pendulum system, in the paper we present a detailed numerical study comporting the advantages and the drawbacks of the FNVI to those of the Smaller Alignment Index (SALI), a reliable indicator of chaos and order in Hamiltonian systems. Our effort was focused both on the traditional behavior of the FNVI for regular and fully developed chaos but on the "sticky" orbits and on the quantitative criterion proposed by Zotos, too. 展开更多
关键词 Double pendulum dynamics indicators of regularity and Chaos.
下载PDF
Optimal four-impulse rendezvous between coplanar elliptical orbits 被引量:6
6
作者 WANG JianXia BAOYIN HeXi +1 位作者 LI JunFeng SUN FuChun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期792-802,共11页
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods p... Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. 展开更多
关键词 If the initial values are taken randomly it is difficult to converge to the optimal solution. elliptical orbit rendezvous primer vector fuel optimal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部