Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
The equations for two-dimensional flow of an upper convected Maxwell (UCM) fluid in a rotating frame are modeled. The resulting equations are first simplified by a boundary layer approach and then solved by a homoto...The equations for two-dimensional flow of an upper convected Maxwell (UCM) fluid in a rotating frame are modeled. The resulting equations are first simplified by a boundary layer approach and then solved by a homotopy analysis method (HAM). Convergence of series solution is discussed through residual error curves. The results of the influence of viscoelastic and rotation parameters are plotted and discussed.展开更多
In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensionai rotationai Euler equations for the incompressible fluid. The application of the method leads to a...In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensionai rotationai Euler equations for the incompressible fluid. The application of the method leads to a system of completely solvable ordinary differential equations. Several special cases are discussed and novel nonlinear exact solutions with respect to variables x and y are obtained. It is'of interest to notice that the pressure p is obtained by the second kind of curvilinear integral and the coefficients of the nonlinear solutions are solitary wave type functions like tanh( kt /2 ) and sech (kt/2) due to the rotational parameter k ≠ O. Such phenomenon never appear in the classical Euler equations wherein the Coriolis force arising from the gravity and Earth's rotation is ignored. Finally, illustrative numerical figures are attached to show the behaviors that the exact solutions may exhibit.展开更多
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金the support of Global Research Network for Computational Mathematies and King Saud University for this research
文摘The equations for two-dimensional flow of an upper convected Maxwell (UCM) fluid in a rotating frame are modeled. The resulting equations are first simplified by a boundary layer approach and then solved by a homotopy analysis method (HAM). Convergence of series solution is discussed through residual error curves. The results of the influence of viscoelastic and rotation parameters are plotted and discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.11301269Jiangsu Provincial Natural Science Foundation of China under Grant No.BK20130665+2 种基金the Fundamental Research Funds KJ2013036 for the Central UniversitiesStudent Research Training under Grant No.1423A02 of Nanjing Agricultural Universitythe Research Grant RG21/2013-2014R from the Hong Kong Institute of Education
文摘In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensionai rotationai Euler equations for the incompressible fluid. The application of the method leads to a system of completely solvable ordinary differential equations. Several special cases are discussed and novel nonlinear exact solutions with respect to variables x and y are obtained. It is'of interest to notice that the pressure p is obtained by the second kind of curvilinear integral and the coefficients of the nonlinear solutions are solitary wave type functions like tanh( kt /2 ) and sech (kt/2) due to the rotational parameter k ≠ O. Such phenomenon never appear in the classical Euler equations wherein the Coriolis force arising from the gravity and Earth's rotation is ignored. Finally, illustrative numerical figures are attached to show the behaviors that the exact solutions may exhibit.