The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtaine...The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtained without performing the Lamb-Dicke approximation. In this system the entangled displacement Fock state is produced.展开更多
Dynamic processes of CO2 are experimentally studied in intense femtosecond laser fields with laser intensity varying from 1×10^13 W/cm^2 to 6×10^14 W/cm^2. When the laser intensity is below the ionization th...Dynamic processes of CO2 are experimentally studied in intense femtosecond laser fields with laser intensity varying from 1×10^13 W/cm^2 to 6×10^14 W/cm^2. When the laser intensity is below the ionization threshold, a coherent rotational wave-packet is formed for CO2 at room temperature through nonadiabatic rotational excitation. The evolution of the wave-packet leads to transient alignment. The field-free alignment revives periodically after the laser pulse is over. The revival structure can be modified by a second laser pulse for the rotational wave-packet through precisely adjusting the time delays between the two laser pulses. When the laser intensity excesses the ionization threshold, ionization and Coulomb explosion occur. The atomic ions C^m+ (re=1-3) and On+ (n=1-3) observed in the experiment exhibit highly anisotropic angular distributions relative to the laser polarization. Using two linearly polarized laser pulses with crossed polarization, we conclude that the anisotropic angular distribution results from dynamic alignment, in which the rising edge of the laser pulse aligns the neutral CO2 along the laser polarization direction prior to ionization.展开更多
By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on th...By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of duster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.展开更多
基金The project supported by the Natural Science Foundation of the Education Committee of Anhui Province of China under Grant No.2004kj186
文摘The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtained without performing the Lamb-Dicke approximation. In this system the entangled displacement Fock state is produced.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20603001, No.10534010, and No.10821062) and the National Basic Research Program of China (No.2006CB806007).
文摘Dynamic processes of CO2 are experimentally studied in intense femtosecond laser fields with laser intensity varying from 1×10^13 W/cm^2 to 6×10^14 W/cm^2. When the laser intensity is below the ionization threshold, a coherent rotational wave-packet is formed for CO2 at room temperature through nonadiabatic rotational excitation. The evolution of the wave-packet leads to transient alignment. The field-free alignment revives periodically after the laser pulse is over. The revival structure can be modified by a second laser pulse for the rotational wave-packet through precisely adjusting the time delays between the two laser pulses. When the laser intensity excesses the ionization threshold, ionization and Coulomb explosion occur. The atomic ions C^m+ (re=1-3) and On+ (n=1-3) observed in the experiment exhibit highly anisotropic angular distributions relative to the laser polarization. Using two linearly polarized laser pulses with crossed polarization, we conclude that the anisotropic angular distribution results from dynamic alignment, in which the rising edge of the laser pulse aligns the neutral CO2 along the laser polarization direction prior to ionization.
基金Supported by National Natural Science Foundation of China under Grant Nos.10774163,11104326,11004226,11174035National Basic Research Program of China(973Program)under Grant Nos.2011CB921803,2012CB921704China Postdoctoral Science Foundation Funded Project under Grant No.2012M510342
文摘By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate 1ow-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of duster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.