A novel 50 kW fast charger was proposed for electric vehicles. The proposed fast charger is divided into two main sections an AC-DC converter performing a PFC function and a DC-DC converter performing a charging funct...A novel 50 kW fast charger was proposed for electric vehicles. The proposed fast charger is divided into two main sections an AC-DC converter performing a PFC function and a DC-DC converter performing a charging function. A transformer including leakage inductances was used in the AC-DC converter in order to obtain isolation and inductance. A series-connection topology was used in the DC-DC converter between the DC-bus and outlet. This topology enables high power conversion efficiency up to 95% for the DC-DC converter. In order to reduce the impact of the 50 kW charging on the AC grid, the proposed fast charger system includes a buffering battery unit between the two main power conversion units. This leads to reductions in the power installation costs of power companies and to improvements in the power quality were verified through simulations and experimental results. on the AC grid. The performances of the proposed fast charger system展开更多
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste...Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.展开更多
Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage st...Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.展开更多
A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the...A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.展开更多
We have researched the performances of organic photovoltaic devices with the bulk heterojunction (BHJ) structure using the organic solution-processable functionalized graphene (SPFGraphene) material as the electro...We have researched the performances of organic photovoltaic devices with the bulk heterojunction (BHJ) structure using the organic solution-processable functionalized graphene (SPFGraphene) material as the electron-accepter material and P3OT as the donor material. The structural configuration of the device is ITO/PEDOT:PSS/P3OT:PCBM-SPFGraphene/LiF/A1. Given the P3OT/PCBM (1:1) mixture with 8wt% of SPFGraphene, the open-circuit voltage (Voc) of the device reaches 0.64 V, a short-circuit current density (J^c) reaches 5.7 mA/cm2, a fill factor (FF) reaches 0.42, and the power conversion efficiency (7?) reaches 1.53% at illumination at 100 mW/cm2 AM1.5. We further studied the reason for the device performances improvement In the P3OT:PCBM-SPFGraphene composite, the SPFGraphene material acts as exciton dissociation sites and provides the transport pathways of the lowest unoccupied molecular orbital (LUMO)-SPFGraphene-A1. Furthermore, adding SPFGraphene to P3OT results in appropriate energetic distance between the highest occupied molecular orbital (HOMO) and LUMO of the donoffacceptor and provides higher exciton dissociation volume mobility of carrier transport. We have researched the effect of annealing treatment for the devices and found that the devices with annealing treatment at 180℃ show better performances compared with devices without annealed treatment. The devices with annealed treatment show the best performance, with an enhancement of the power conversion efficiency from 1.53% to 1.75%.展开更多
Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible gra...Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.展开更多
A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, w...A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, which may greatly increase the capacity for communicating and encoding information. However, conventional harmonic vortex beam generators suffer from complex designs and a low nonlinear conversion efficiency. Here, we propose and experimentally demonstrate the generation of a large second-harmonic(SH) vortex beam with quasi-nonlinear spin–orbit interaction(SOI). Highquality SH vortex beams with large topological charges up to 28 are realized experimentally. This indicated that the quasi-angular-momentum of a plasmonic spiral phase plate at the excitation wavelength(topological charge, q) could be imprinted on the harmonic signals from the attached WS2 monolayer. The generated harmonic vortex beam has a topological charge of l_(n)= 2 nq(n is the harmonic order). The results may open new avenues for generating harmonic optical vortices for optical communications and enables novel multi-functional hybrid metasurface devices to manipulate harmonic beams.展开更多
基金Project supported by Changwon National University in 2011-2012
文摘A novel 50 kW fast charger was proposed for electric vehicles. The proposed fast charger is divided into two main sections an AC-DC converter performing a PFC function and a DC-DC converter performing a charging function. A transformer including leakage inductances was used in the AC-DC converter in order to obtain isolation and inductance. A series-connection topology was used in the DC-DC converter between the DC-bus and outlet. This topology enables high power conversion efficiency up to 95% for the DC-DC converter. In order to reduce the impact of the 50 kW charging on the AC grid, the proposed fast charger system includes a buffering battery unit between the two main power conversion units. This leads to reductions in the power installation costs of power companies and to improvements in the power quality were verified through simulations and experimental results. on the AC grid. The performances of the proposed fast charger system
基金Project(2009CK2001) supported by the Science & Technology Development Key Program of Hunan Province STA of ChinaProject supported by the Young Teachers Program of Hunan University,China
文摘Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.
文摘Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.
文摘A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.
基金supported by the National Outstanding Youth Science Foundation (Grant No. 60825407)the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703)+3 种基金the National Natural Science Foundation of China (Grant Nos. 60877025 and61077044)Beijing Science and Technology Committee (Grant Nos.Z101103055810003 and D090803044009001)Beijing Natural Science Fund Project (Grant No. 2092024)the Excellent Doctor’s Science and Technology Innovation Foundation of Beijing Jiaotong University, China(Grant No. 2011YJS279)
文摘We have researched the performances of organic photovoltaic devices with the bulk heterojunction (BHJ) structure using the organic solution-processable functionalized graphene (SPFGraphene) material as the electron-accepter material and P3OT as the donor material. The structural configuration of the device is ITO/PEDOT:PSS/P3OT:PCBM-SPFGraphene/LiF/A1. Given the P3OT/PCBM (1:1) mixture with 8wt% of SPFGraphene, the open-circuit voltage (Voc) of the device reaches 0.64 V, a short-circuit current density (J^c) reaches 5.7 mA/cm2, a fill factor (FF) reaches 0.42, and the power conversion efficiency (7?) reaches 1.53% at illumination at 100 mW/cm2 AM1.5. We further studied the reason for the device performances improvement In the P3OT:PCBM-SPFGraphene composite, the SPFGraphene material acts as exciton dissociation sites and provides the transport pathways of the lowest unoccupied molecular orbital (LUMO)-SPFGraphene-A1. Furthermore, adding SPFGraphene to P3OT results in appropriate energetic distance between the highest occupied molecular orbital (HOMO) and LUMO of the donoffacceptor and provides higher exciton dissociation volume mobility of carrier transport. We have researched the effect of annealing treatment for the devices and found that the devices with annealing treatment at 180℃ show better performances compared with devices without annealed treatment. The devices with annealed treatment show the best performance, with an enhancement of the power conversion efficiency from 1.53% to 1.75%.
基金supported by the National Natural Science Foundation of China(21975273,21801014,21773012,and U2032112)Shandong Provincial Natural Science Foundation(ZR2021QE191)+3 种基金the Scientific Research Starting Foundation of Outstanding Young Scholar of Shandong Universitythe Future Young Scholars Program of Shandong Universitythe Fundamental Research Funds of Shandong Universitysupported by the Analysis&Testing Center of Beijing Institute of Technology。
文摘Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.
基金This work was supported by the National Natural Science Foundation of China(91850113,11774115 and 11904271)the National Basic Research Program of China(2014CB921301)the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302003)。
文摘A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, which may greatly increase the capacity for communicating and encoding information. However, conventional harmonic vortex beam generators suffer from complex designs and a low nonlinear conversion efficiency. Here, we propose and experimentally demonstrate the generation of a large second-harmonic(SH) vortex beam with quasi-nonlinear spin–orbit interaction(SOI). Highquality SH vortex beams with large topological charges up to 28 are realized experimentally. This indicated that the quasi-angular-momentum of a plasmonic spiral phase plate at the excitation wavelength(topological charge, q) could be imprinted on the harmonic signals from the attached WS2 monolayer. The generated harmonic vortex beam has a topological charge of l_(n)= 2 nq(n is the harmonic order). The results may open new avenues for generating harmonic optical vortices for optical communications and enables novel multi-functional hybrid metasurface devices to manipulate harmonic beams.