To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics...To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.展开更多
The coupled dynamic characteristics of the conical electromagnetic bearing are presented and their definitions are given. On the basis of the analyses of the characteristics, the dynamic model of five degrees of freed...The coupled dynamic characteristics of the conical electromagnetic bearing are presented and their definitions are given. On the basis of the analyses of the characteristics, the dynamic model of five degrees of freedom (five-DOF) rotor-conical electromagnetic bearing system is made, and the influence of the coupled characteristics on the system optimal controller is analyzed.展开更多
Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the beari...Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.展开更多
In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibr...In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.展开更多
Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearing...Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearings were estimated.The Newmark-β method and Newton-Laphson method were used to solve the equations.The dynamic characteristics of rotor system were studied through the time response,the phase portrait,the Poincar?maps and the bifurcation diagrams.The results show that the system goes through the quasi-periodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions.The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases;the initial contact angle of ball bearing affects dynamic behaviors of the system obviously.The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
Based on the short-bearing model, the stability of a rigid Jeffcott rotor system is studied in a relatively wide parameter range by using Poincaré maps and the numerical integration method. The results of the cal...Based on the short-bearing model, the stability of a rigid Jeffcott rotor system is studied in a relatively wide parameter range by using Poincaré maps and the numerical integration method. The results of the calculation show that the period doubling bifurcation, quasi-periodic and chaotic motions may occur. In some typical parameter regions, the bifurcation diagrams, phase portrait, Poincaré maps and the frequency spectrums of the system are acquired with the numerical integration method. They demonstrate some motion state of the system. The fractal dimension concept is used to determine whether the system is in a state of chaotic motion. The analysis result of this paper provides the theoretical basis for qualitatively controlling the stable operating states of the rotors.展开更多
The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam tur...The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam turbine axis orbit,the structure and functions or neural network are applied to this system,which can be used to auto-recognize axis orbit of the system turbine rotor using BP neural network.展开更多
文摘To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.
文摘The coupled dynamic characteristics of the conical electromagnetic bearing are presented and their definitions are given. On the basis of the analyses of the characteristics, the dynamic model of five degrees of freedom (five-DOF) rotor-conical electromagnetic bearing system is made, and the influence of the coupled characteristics on the system optimal controller is analyzed.
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of ChinaProject(3102020HHZY030001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.
基金Project(2012CB026000)supported by the National Basic Research Program of China(973 Program)
文摘In view of an entire dynamic model of tilting-pad journal bearing(TPJB) in which the pads swing and vibrate along geometric direction of preload, a TPJB of elastic and damped pivots was designed and manufactured. Vibration experiments were carried out under the conditions of different rotor bending stiffness and oil supply pressure to find out the relationship between the new bearing's vibration depression effect and other dynamic parameters of the rotor. The result shows that critical amplitudes can be efficaciously reduced while system's stability can be remarkably improved by this bearing. Besides, the bearing's effect of vibration depression weakens as the rotor bending stiffness increases, but heightens it as the oil supply pressure increases.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50575054)
文摘Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearings were estimated.The Newmark-β method and Newton-Laphson method were used to solve the equations.The dynamic characteristics of rotor system were studied through the time response,the phase portrait,the Poincar?maps and the bifurcation diagrams.The results show that the system goes through the quasi-periodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions.The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases;the initial contact angle of ball bearing affects dynamic behaviors of the system obviously.The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
文摘Based on the short-bearing model, the stability of a rigid Jeffcott rotor system is studied in a relatively wide parameter range by using Poincaré maps and the numerical integration method. The results of the calculation show that the period doubling bifurcation, quasi-periodic and chaotic motions may occur. In some typical parameter regions, the bifurcation diagrams, phase portrait, Poincaré maps and the frequency spectrums of the system are acquired with the numerical integration method. They demonstrate some motion state of the system. The fractal dimension concept is used to determine whether the system is in a state of chaotic motion. The analysis result of this paper provides the theoretical basis for qualitatively controlling the stable operating states of the rotors.
文摘The structure,function and recognition method of an axis orbit auto-recognizing system are presented in this paper.In order to make the best use of information of format and dynamic characteristics of marine steam turbine axis orbit,the structure and functions or neural network are applied to this system,which can be used to auto-recognize axis orbit of the system turbine rotor using BP neural network.