利用根尖压片法对可再生型发根农杆菌A4转化系毛根和不可再生型转化系毛根进行了染色体计数,并利用聚丙稀酰胺凝胶电泳法对其进行过氧化物酶 POD 、细胞色素氧化酶 COD 、酯酶 EST 的同工酶酶谱分析.结果表明: 1 染色体丢失现象在转化...利用根尖压片法对可再生型发根农杆菌A4转化系毛根和不可再生型转化系毛根进行了染色体计数,并利用聚丙稀酰胺凝胶电泳法对其进行过氧化物酶 POD 、细胞色素氧化酶 COD 、酯酶 EST 的同工酶酶谱分析.结果表明: 1 染色体丢失现象在转化的毛根根尖中是普遍存在的,不可再生转化系与可再生转化系相比,染色体丢失比例显著增多; 2 不可再生转化系的POD和COD同工酶酶谱变化较可再生转化系的变化大,且EST含量明显低于可再生转化系.展开更多
The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil s...The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.展开更多
An efficient genetic transformation system is a preparation for Rosa multi-flora Thunb. var. cathayensis Rehd. et Wils to diversify its flower color through ge-netic engineering. We firstly optimized the explants and ...An efficient genetic transformation system is a preparation for Rosa multi-flora Thunb. var. cathayensis Rehd. et Wils to diversify its flower color through ge-netic engineering. We firstly optimized the explants and culture conditions on callus induction, hormone concentrations and dark period of culture time on bud differentia-tions in particular, with sterilized seedlings to establish the regeneration system of R. multiflora. It showed that callus induction frequency reached 100% after the ex-plants being cultured in dark for 21 d when MS was chosen to be the initial culture medium. The bud differentiation rate was 48% after cal i being cultured under dark for 8 d on MS medium supplemented with TDZ (1.5 mg/L) and NAA (0.05 mg/L). The cal i was used as the explants that were infected with Agrobacterium tumefa-ciens harboring a DFR-RNAi construct. The transformation rate reached as high as 50%. The establishment of a highly efficient rose gene transformation system out-lined in this report is prerequisite for genetic improvement in rose flower colors.展开更多
基金Projects(41572277,41402239)supported by the National Natural Science Foundation of ChinaProject(2015A030313118)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Project(20120171110031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.
基金Supported by the State Bureau of Forestry 948 Project(P2009-4-25)~~
文摘An efficient genetic transformation system is a preparation for Rosa multi-flora Thunb. var. cathayensis Rehd. et Wils to diversify its flower color through ge-netic engineering. We firstly optimized the explants and culture conditions on callus induction, hormone concentrations and dark period of culture time on bud differentia-tions in particular, with sterilized seedlings to establish the regeneration system of R. multiflora. It showed that callus induction frequency reached 100% after the ex-plants being cultured in dark for 21 d when MS was chosen to be the initial culture medium. The bud differentiation rate was 48% after cal i being cultured under dark for 8 d on MS medium supplemented with TDZ (1.5 mg/L) and NAA (0.05 mg/L). The cal i was used as the explants that were infected with Agrobacterium tumefa-ciens harboring a DFR-RNAi construct. The transformation rate reached as high as 50%. The establishment of a highly efficient rose gene transformation system out-lined in this report is prerequisite for genetic improvement in rose flower colors.