The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equatio...The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.展开更多
In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid sol...In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid solving the nonlinear problem directly.By extension of sensitivity approach for differential difference equations(DDEs),the nonlinear original problem is transformed into infinite linear differential difference equations,which should be solved in a recursive manner.Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained.Numerical examples are employed to show the effectiveness of the proposed approach.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 40876010the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08+3 种基金the R & D Special Fund for Public Welfare Industry (meteorology) under Grant No. GYHY200806010the LASG State Key Laboratory Special Fundthe E-Institutes of Shanghai Municipal Education Commission under Grant No. E03004the Natural Science Foundation of Zhejiang Province under Grant No. Y6090164
文摘The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.
文摘In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid solving the nonlinear problem directly.By extension of sensitivity approach for differential difference equations(DDEs),the nonlinear original problem is transformed into infinite linear differential difference equations,which should be solved in a recursive manner.Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained.Numerical examples are employed to show the effectiveness of the proposed approach.