For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper leng...For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper length-detecting is a straightforward yet efficient solution. Binary search strategy can reduce the number of required hash detecting in the worst case. However, to assure the searching path correct in such a schema, either backtrack searching or redundantly storing some prefixes is required, leading to performance or memory issues as a result. In this paper, we make a deep study on the binary search, and propose a novel mechanism to ensure correct searching path without neither additional backtrack costs nor redundant memory consumptions. Along any binary search path, a bloom filter is employed at each branching point to verify whether a said prefix is present, instead of storing that prefix here. By this means, we can gain significantly optimization on memory efficiency, at the cost of bloom checking before each detecting. Our evaluation experiments on both real-world and randomly synthesized data sets demonstrate our superiorities clearly展开更多
Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage st...Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.展开更多
In this work, we have studied the concentration quenching in transparent glass ceramics containing Er^3+:NaYF4 nanocrystals. For different concentrations, the emission spectra and decay curves of the ^4I/3/2 → ^4I1...In this work, we have studied the concentration quenching in transparent glass ceramics containing Er^3+:NaYF4 nanocrystals. For different concentrations, the emission spectra and decay curves of the ^4I/3/2 → ^4I15/2 emission were measured. The Er-concentration dependence of integrated intensity and lifetime of ^4I13/2→^4I15/2 emission are showed. With the increase of the Er^3+ doping concentration, the 1.5 μm fluorescence emission first increases, then decreases, and the lifetime falls gradually. With 980 nm excitation, the efficiency of the energy transfer from Er^3+ to quenching centers reaches 73.73% for the sample with 4 mol% Er^3+. Meanwhile, owing to the relation of fluorescence integrated intensity and Er-concentration, a dipole-dipole quenching mechanism in the framework of a limited diffusion regime has been proved. Using the limited diffusion case, the critical concentration for quenching has been determined from a fitting equation of the lifetime and Er-concentration. The fit- ting result shows the critical concentration for quenching is higher than the values obtained in Er-doped different glass by an order of magnitude.展开更多
Interfacial solar-steam generation is a promising and cost-effective technology for both desalination and wastewater treatment.This process uses a photothermal evaporator to absorb sunlight and convert it into heat fo...Interfacial solar-steam generation is a promising and cost-effective technology for both desalination and wastewater treatment.This process uses a photothermal evaporator to absorb sunlight and convert it into heat for water evaporation.However solar-steam generation can be somewhat inefficient due to energy losses via conduction,convection and radiation.Thus,efficient energy management is crucial for optimizing the performance of solar-steam generation.Here,via elaborate design of the configuration of photothermal materials,as well as warm and cold evaporation surfaces,performance in solar evaporation was significantly enhanced.This was achieved via a simultaneous reduction in energy loss with a net increase in energy gain from the environment,and recycling of the latent heat released from vapor condensation,diffusive reflectance,thermal radiation and convection from the evaporation surface.Overall,by using the new strategy,an evaporation rate of 2.94 kg m^-2 h^-1,with a corresponding energy efficiency of solar-steam generation beyond theoretical limit was achieved.展开更多
With the rapid development in recent years, small-molecule organic solar cell is challenging the dominance of its counterpart, polymer solar cell. The top power conversion efficiencies of both single and tandem solar ...With the rapid development in recent years, small-molecule organic solar cell is challenging the dominance of its counterpart, polymer solar cell. The top power conversion efficiencies of both single and tandem solar cells based on small molecules have surpassed 9%. In this mini review, achievements of small molecules with impressive photovoltaic performance especially reported in the last two years were highlighted. The relationship between molecular structure and device performance was analyzed, which draws some rules for rational molecular design. Five series of p- and n-type small molecules were selected based on the consideration of their competitiveness of power conversion efficiencies.展开更多
Gene therapy targeted to vascular cells repre- sents a promising approach for prevention and treatment of pathological conditions such as intimal hyperplasia, in-stent and post-angioplasty restenosis. In this context,...Gene therapy targeted to vascular cells repre- sents a promising approach for prevention and treatment of pathological conditions such as intimal hyperplasia, in-stent and post-angioplasty restenosis. In this context, polymeric non-viral gene delivery systems are a safe alternative to viral vectors but a further improvement in efficiency and cytocom- patibility is needed to improve their clinical success. Herein, a library of 24 branched polyethylenimine (bPEI) derivatives modified with hydrophobic moieties was synthesised, char- acterised and tested in vitro on primary vascular cells, aim- ing to identify delivery agents with superior transfection effi- ciency and low cytotoxicity. Low molecular weight PEIs (0.6, 1.2 and 2 kDa) were grafted with long (C18) and short (C3) aliphatic chains, featuring different unsaturation degrees and degrees of substitution. 0.6 kDa bPEI-based derivatives were generally ineffective in transfection on vascular smooth mus- cle cells (VSMCs), while among the other derivatives some promising vectors were identified. Forcing polyplexes on the cell surface by means of centrifugation invariably boosted transfection levels but increased cytotoxicity as well. Of note, a propionyl-snbstituted derivative (PEI2-PrA1, C3:0) was the most effective on both VSMCs and endothelial cells (ECs), with higher and more sustained gene expression in combi- nation with markedly lower cytotoxicity with respect to the gold standard 25 kDa bPEI. In addition, a linoleoyl-substi- tuted derivative (PEI1.2-LA6, C18:2) owing to its high effi- ciency in VSMCs and relative inefficacy in ECs, combined with tolerable cytotoxicity was proposed as a vector for spe- cific VSMCs targeting.展开更多
A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the...A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.展开更多
Power generation using small temperature difference such as ocean thermal energy conversion(OTEC)and discharged thermal energy conversion(DTEC)is expected to be the countermeasures against global warming problem.As am...Power generation using small temperature difference such as ocean thermal energy conversion(OTEC)and discharged thermal energy conversion(DTEC)is expected to be the countermeasures against global warming problem.As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids,the research of their local boiling heat transfer is important for improvement of the power generation efficiency.Measurements of local boiling heat transfer coefficients were performed for ammonia/water mixture(z=0.9-1)on a vertical flat plate heat exchanger in a range of mass flux(7.5-15 kg/m2s),heat flux(15-23 kW/m 2),and pressure(0.7-0.9 MPa).The result shows that in the case of ammonia/water mixture,the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia,and decrease with an increase of heat flux.展开更多
The effects of chenodeoxycholic acid (CDCA) in a dye solution as a co-adsorbent on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on two organic dyes containing phenothiazine and triarylamine...The effects of chenodeoxycholic acid (CDCA) in a dye solution as a co-adsorbent on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on two organic dyes containing phenothiazine and triarylamine segments (P1 and P2) were investigated.It was found that the coadsorption of CDCA can hinder the formation of dye aggregates and improve electron injection yield and thus Jsc.This has also led to a rise in photovoltage,which is attributed to the decrease of charge recombination.The DSSC based on dye P2 showed better photovoltaic performance than P1:a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 89.5%,a short-circuit photocurrent density (Jsc) of 9.57 mA/cm2,an open-circuit photovoltage (Voc) of 697 mV,and a fill factor (FF) of 0.66,corresponding to an overall conversion efficiency of 4.42% under the standard global AM 1.5 solar light condition.The overall conversion efficiency was further improved to 5.31% (Jsc=10.36 mA/cm2,Voc=0.730 V,FF=0.70) upon addition of 10 mM CDCA to the dye solution for TiO2 sensitization.Electrochemical impedance data indicate that the electron lifetime was improved by coadsorption of CDCA,accounting for the significant improvement of Voc.These results suggest that interfacial engineering of the organic dye-sensitized TiO2 electrodes is important for highly efficient photovoltaic performance of the solar cell.展开更多
The ternary blend films have been fabricated via adding 4,4'-N,N'-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C...The ternary blend films have been fabricated via adding 4,4'-N,N'-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.展开更多
Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic p...Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic performance in organic solar cells(OSCs).Herein,we demonstrated a solvent-water evaporation(SWE)strategy,which can effectively remove the water-induced traps that are omnipresent in photoactive layers,leading to a significant improvement in device performance.A higher power conversion efficiency of 17.10%and a better device photostability are achieved by using this SWE method,as compared with the untreated binary PM6:Y6 system(15.83%).We highlight the water-related traps as a limiting factor for carrier transport and extraction properties,and further reveal the good universality of the SWE strategy applied into OSCs.In addition,organic light-emitting diodes and organic field-effect transistors are investigated to demonstrate the applicability of this SWE approach.This strategy presents a major step forward for advancing the field of organic electronics.展开更多
Due to distinctive lattice and electronic properties,the thiocyanate anion(SCN-)perovskite as an alluring two-dimensional(2D)material system,can be applied in optoelectronic devices.Herein,both photovoltaic and photod...Due to distinctive lattice and electronic properties,the thiocyanate anion(SCN-)perovskite as an alluring two-dimensional(2D)material system,can be applied in optoelectronic devices.Herein,both photovoltaic and photodetection performances of the 2D Cs2Pb(SCN)2I2 have been investigated.Compared with the conventional cationic 2D perovskites,Cs2Pb(SCN)2I2 possesses ultra-small interlayer spacing,additional interlayer nano channels,which is thus beneficial for charge transport ability.The planar heterojunction solar cell based on Cs2Pb(SCN)2I2 as the light absorber,has presented the highest power conversion efficiency among long-chain-cation-based 2D perovskite devices.Besides,the Cs2Pb(SCN)2I2-based photodetector also exhibits much higher photodetection performance(i.e.quantum efficiency,on/off ratio,responsivity,detectivity,response speed,polarization sensitivity and detection stability).It is thus suggested that these outstanding photoelectric characteristics of Cs2Pb(SCN)2I2 could bring huge opportunities for its more abundant optoelectronic applications,such as field-effect transistor and light-emitting diodes.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61472130 and 61702174)the China Postdoctoral Science Foundation funded project
文摘For name-based routing/switching in NDN, the key challenges are to manage large-scale forwarding Tables, to lookup long names of variable lengths, and to deal with frequent updates. Hashing associated with proper length-detecting is a straightforward yet efficient solution. Binary search strategy can reduce the number of required hash detecting in the worst case. However, to assure the searching path correct in such a schema, either backtrack searching or redundantly storing some prefixes is required, leading to performance or memory issues as a result. In this paper, we make a deep study on the binary search, and propose a novel mechanism to ensure correct searching path without neither additional backtrack costs nor redundant memory consumptions. Along any binary search path, a bloom filter is employed at each branching point to verify whether a said prefix is present, instead of storing that prefix here. By this means, we can gain significantly optimization on memory efficiency, at the cost of bloom checking before each detecting. Our evaluation experiments on both real-world and randomly synthesized data sets demonstrate our superiorities clearly
文摘Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.
基金supported by the Fujian Natural Science Foundation of China (Grant No. 2009J05139)the Fujian Science and Technology major projects of China (Grant No. 2007HJ0004-2)+1 种基金the Project of Education Department of Fujian Province of China (Grant No. JK2011008)the Innovation Project for Young Scientists of Fujian Province of China (Grant No. 2007F3027)
文摘In this work, we have studied the concentration quenching in transparent glass ceramics containing Er^3+:NaYF4 nanocrystals. For different concentrations, the emission spectra and decay curves of the ^4I/3/2 → ^4I15/2 emission were measured. The Er-concentration dependence of integrated intensity and lifetime of ^4I13/2→^4I15/2 emission are showed. With the increase of the Er^3+ doping concentration, the 1.5 μm fluorescence emission first increases, then decreases, and the lifetime falls gradually. With 980 nm excitation, the efficiency of the energy transfer from Er^3+ to quenching centers reaches 73.73% for the sample with 4 mol% Er^3+. Meanwhile, owing to the relation of fluorescence integrated intensity and Er-concentration, a dipole-dipole quenching mechanism in the framework of a limited diffusion regime has been proved. Using the limited diffusion case, the critical concentration for quenching has been determined from a fitting equation of the lifetime and Er-concentration. The fit- ting result shows the critical concentration for quenching is higher than the values obtained in Er-doped different glass by an order of magnitude.
基金financial support from Australian Research Council(ARC Future Fellowship FT190100485)University of South Australia(Foundation Fellow)China Scholarship Council and Huasheng Graphite Co.,Ltd。
文摘Interfacial solar-steam generation is a promising and cost-effective technology for both desalination and wastewater treatment.This process uses a photothermal evaporator to absorb sunlight and convert it into heat for water evaporation.However solar-steam generation can be somewhat inefficient due to energy losses via conduction,convection and radiation.Thus,efficient energy management is crucial for optimizing the performance of solar-steam generation.Here,via elaborate design of the configuration of photothermal materials,as well as warm and cold evaporation surfaces,performance in solar evaporation was significantly enhanced.This was achieved via a simultaneous reduction in energy loss with a net increase in energy gain from the environment,and recycling of the latent heat released from vapor condensation,diffusive reflectance,thermal radiation and convection from the evaporation surface.Overall,by using the new strategy,an evaporation rate of 2.94 kg m^-2 h^-1,with a corresponding energy efficiency of solar-steam generation beyond theoretical limit was achieved.
基金supported by the National Basic Research Program of China(2014CB643502)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12010200)the National Natural Science Foundation of China(91333113)
文摘With the rapid development in recent years, small-molecule organic solar cell is challenging the dominance of its counterpart, polymer solar cell. The top power conversion efficiencies of both single and tandem solar cells based on small molecules have surpassed 9%. In this mini review, achievements of small molecules with impressive photovoltaic performance especially reported in the last two years were highlighted. The relationship between molecular structure and device performance was analyzed, which draws some rules for rational molecular design. Five series of p- and n-type small molecules were selected based on the consideration of their competitiveness of power conversion efficiencies.
基金financially supported by the Natural Science and Engineering Research Council of Canada, (Discovery Grant to UludagH and Mantovani D)the Canadian Institute for Health Research (Operating grant to Uludag H)the Fonds de Recherche du Quebec sur les Natures et Technologies (Bilateral Grant to Mantovani D)
文摘Gene therapy targeted to vascular cells repre- sents a promising approach for prevention and treatment of pathological conditions such as intimal hyperplasia, in-stent and post-angioplasty restenosis. In this context, polymeric non-viral gene delivery systems are a safe alternative to viral vectors but a further improvement in efficiency and cytocom- patibility is needed to improve their clinical success. Herein, a library of 24 branched polyethylenimine (bPEI) derivatives modified with hydrophobic moieties was synthesised, char- acterised and tested in vitro on primary vascular cells, aim- ing to identify delivery agents with superior transfection effi- ciency and low cytotoxicity. Low molecular weight PEIs (0.6, 1.2 and 2 kDa) were grafted with long (C18) and short (C3) aliphatic chains, featuring different unsaturation degrees and degrees of substitution. 0.6 kDa bPEI-based derivatives were generally ineffective in transfection on vascular smooth mus- cle cells (VSMCs), while among the other derivatives some promising vectors were identified. Forcing polyplexes on the cell surface by means of centrifugation invariably boosted transfection levels but increased cytotoxicity as well. Of note, a propionyl-snbstituted derivative (PEI2-PrA1, C3:0) was the most effective on both VSMCs and endothelial cells (ECs), with higher and more sustained gene expression in combi- nation with markedly lower cytotoxicity with respect to the gold standard 25 kDa bPEI. In addition, a linoleoyl-substi- tuted derivative (PEI1.2-LA6, C18:2) owing to its high effi- ciency in VSMCs and relative inefficacy in ECs, combined with tolerable cytotoxicity was proposed as a vector for spe- cific VSMCs targeting.
文摘A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.
基金supported by the fund for the 21st Century Center of Excellence program(Advanced Science and Technology for Utilization of Ocean Energy)
文摘Power generation using small temperature difference such as ocean thermal energy conversion(OTEC)and discharged thermal energy conversion(DTEC)is expected to be the countermeasures against global warming problem.As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids,the research of their local boiling heat transfer is important for improvement of the power generation efficiency.Measurements of local boiling heat transfer coefficients were performed for ammonia/water mixture(z=0.9-1)on a vertical flat plate heat exchanger in a range of mass flux(7.5-15 kg/m2s),heat flux(15-23 kW/m 2),and pressure(0.7-0.9 MPa).The result shows that in the case of ammonia/water mixture,the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia,and decrease with an increase of heat flux.
基金supported by the National Natural Science Foundation of China (20772031 & 61006048)National Basic Research Program of China (973 Program) (2006CB806200)+1 种基金the Fundamental Research Funds for the Central Universities (WJ0913001)Scientific Committee of Shanghai (10520709700)
文摘The effects of chenodeoxycholic acid (CDCA) in a dye solution as a co-adsorbent on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on two organic dyes containing phenothiazine and triarylamine segments (P1 and P2) were investigated.It was found that the coadsorption of CDCA can hinder the formation of dye aggregates and improve electron injection yield and thus Jsc.This has also led to a rise in photovoltage,which is attributed to the decrease of charge recombination.The DSSC based on dye P2 showed better photovoltaic performance than P1:a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 89.5%,a short-circuit photocurrent density (Jsc) of 9.57 mA/cm2,an open-circuit photovoltage (Voc) of 697 mV,and a fill factor (FF) of 0.66,corresponding to an overall conversion efficiency of 4.42% under the standard global AM 1.5 solar light condition.The overall conversion efficiency was further improved to 5.31% (Jsc=10.36 mA/cm2,Voc=0.730 V,FF=0.70) upon addition of 10 mM CDCA to the dye solution for TiO2 sensitization.Electrochemical impedance data indicate that the electron lifetime was improved by coadsorption of CDCA,accounting for the significant improvement of Voc.These results suggest that interfacial engineering of the organic dye-sensitized TiO2 electrodes is important for highly efficient photovoltaic performance of the solar cell.
基金supported by the National Natural Science Foundation of China (Grant No. 50803014)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences
文摘The ternary blend films have been fabricated via adding 4,4'-N,N'-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.
基金the National Natural Science Foundation of China(NSFC)(51773157 and 52061135206)the Fundamental Research Funds for the Central UniversitiesThe authors also thank the support of the opening project of Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences(BNLMS201905).
文摘Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic performance in organic solar cells(OSCs).Herein,we demonstrated a solvent-water evaporation(SWE)strategy,which can effectively remove the water-induced traps that are omnipresent in photoactive layers,leading to a significant improvement in device performance.A higher power conversion efficiency of 17.10%and a better device photostability are achieved by using this SWE method,as compared with the untreated binary PM6:Y6 system(15.83%).We highlight the water-related traps as a limiting factor for carrier transport and extraction properties,and further reveal the good universality of the SWE strategy applied into OSCs.In addition,organic light-emitting diodes and organic field-effect transistors are investigated to demonstrate the applicability of this SWE approach.This strategy presents a major step forward for advancing the field of organic electronics.
基金supported by the National Key R&D Program of China(2018YFB1500101)the National Natural Science Foundation of China(11874402,51421002,51627803,91733301 and 51761145042)the International Partnership Program of Chinese Academy of Sciences(112111KYSB20170089)。
文摘Due to distinctive lattice and electronic properties,the thiocyanate anion(SCN-)perovskite as an alluring two-dimensional(2D)material system,can be applied in optoelectronic devices.Herein,both photovoltaic and photodetection performances of the 2D Cs2Pb(SCN)2I2 have been investigated.Compared with the conventional cationic 2D perovskites,Cs2Pb(SCN)2I2 possesses ultra-small interlayer spacing,additional interlayer nano channels,which is thus beneficial for charge transport ability.The planar heterojunction solar cell based on Cs2Pb(SCN)2I2 as the light absorber,has presented the highest power conversion efficiency among long-chain-cation-based 2D perovskite devices.Besides,the Cs2Pb(SCN)2I2-based photodetector also exhibits much higher photodetection performance(i.e.quantum efficiency,on/off ratio,responsivity,detectivity,response speed,polarization sensitivity and detection stability).It is thus suggested that these outstanding photoelectric characteristics of Cs2Pb(SCN)2I2 could bring huge opportunities for its more abundant optoelectronic applications,such as field-effect transistor and light-emitting diodes.