In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising f...Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.展开更多
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
基金Supported by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20123305120008, the Scientific Research Project of Department of Education of Zhejiang Province under Grant No. Y201223508, a Grant from the Impact and Safety of Coastal Engineering Initiative, a COE Program of Zhejiang Provincial Government at Ningbo University under Grant Nos. zj1117, zj1203, and zj1201 and the K.C. Wong Magana Fund
文摘Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.