We propose a novel vertical Bell Laboratories layered space-time (V-BLAST) based two-way relaying protocol that comprises two user terminals and one multi-antenna demodulate-and-forward (DMF) relay station. We con...We propose a novel vertical Bell Laboratories layered space-time (V-BLAST) based two-way relaying protocol that comprises two user terminals and one multi-antenna demodulate-and-forward (DMF) relay station. We consider the situation when these two user temainals employ different modulation types and investigate its detection techniques. The key feature of the detection techniques is that we quantify decision reliability at the relay station by introducing a so-called normalized correlation coefficient (CORR), rather than having full confidence in demodulation at the relay station. With the assistance of the normalized correlation coefficient, we develop detection methods at both the relay station and user terminals. In particular, we propose a CORR-based ordering algorithm at the relay station which can be applied to detection for general V-BLAST architectures. Simulation results demonstrate the superiority of the CORR- based ordering algorithm over the conventional signal-to-noise based ordering algorithm. Finally, we demonstrate overall error-performance of the V-BLAST-based DMF two-way relaying protocol via simulations.展开更多
The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are...The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are submerged at the middle of the platform. Such a profile can make the flow velocity at the runner twice faster than that of OWC (oscillating water column) type constructed adjacent to the seashore. The behavior of the platform in the wave has been reported, and this paper continuously investigates the effects of the runner casing on the runner work and the platform behavior. Besides, the flows around the Wells type, not only single runner but also tandem runners are investigated numerically. It was confirmed that the runner work attenuates the platform amplitude and the runner casing contributes to increase the output. The flow simulation suggests that the tandem runners may be appropriate for the floating type ocean wave power station to get enough output.展开更多
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA01Z280,2007AA01 Z278).
文摘We propose a novel vertical Bell Laboratories layered space-time (V-BLAST) based two-way relaying protocol that comprises two user terminals and one multi-antenna demodulate-and-forward (DMF) relay station. We consider the situation when these two user temainals employ different modulation types and investigate its detection techniques. The key feature of the detection techniques is that we quantify decision reliability at the relay station by introducing a so-called normalized correlation coefficient (CORR), rather than having full confidence in demodulation at the relay station. With the assistance of the normalized correlation coefficient, we develop detection methods at both the relay station and user terminals. In particular, we propose a CORR-based ordering algorithm at the relay station which can be applied to detection for general V-BLAST architectures. Simulation results demonstrate the superiority of the CORR- based ordering algorithm over the conventional signal-to-noise based ordering algorithm. Finally, we demonstrate overall error-performance of the V-BLAST-based DMF two-way relaying protocol via simulations.
文摘The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are submerged at the middle of the platform. Such a profile can make the flow velocity at the runner twice faster than that of OWC (oscillating water column) type constructed adjacent to the seashore. The behavior of the platform in the wave has been reported, and this paper continuously investigates the effects of the runner casing on the runner work and the platform behavior. Besides, the flows around the Wells type, not only single runner but also tandem runners are investigated numerically. It was confirmed that the runner work attenuates the platform amplitude and the runner casing contributes to increase the output. The flow simulation suggests that the tandem runners may be appropriate for the floating type ocean wave power station to get enough output.